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Outline

Goal:

@ Define a family of quantum Heisenberg categories categorifying the
Heisenberg algebra

@ Study categorical actions and applications in representation theory

Overview:
© Quantum Heisenberg category
@ Categorical actions
© Quantum Frobenius Heisenberg category

© Future directions
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Monoidally generated affine Hecke algebras

Fix a commutative ground ring k and parameters z,t € k*.

Let A (z) be the strict k-linear monoidal category generated by
@ one object 1, and

@ three morphisms

rot, XL W itetoter.

IR
K= X==11 a =KX=

End 430 (1°")
is the affine Hecke algebra of type A, _1.
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The quantum Heisenberg category

Fix a central charge k € Z. (Assume k < 0 for simplicity.)

To obtain the quantum Heisenberg category Heisk(z,t) from AH(z) we
perform two steps:

@ We adjoin a right dual | to 1. Precisely, we add a generating object |
and additional generating morphisms

1 =l®7 and M Tel=1

-] = pd-]
@ We add more generating morphisms and relations ensuring that the
resulting monoidal category is pivotal and that

such that

191 210l e19Ch), (Canonical commutation isom)
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The quantum Heisenberg category

There are three equivalent ways to do this. For simplicity, suppose k = —1

First approach: Add generating morphisms

M and X

and relations

[t;\;\] :[U/\l u]il and @ztz—llﬂ,

Second approach: Add generating morphisms

Y and :/\/

and relations

[t—lg\;x@] - [L/\/l U}il and @z 7127y,
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The quantum Heiseberg category

Third approach: Generating morphisms

subject to the relations

Q-1 2- K-
KXl =] pJ- I

1| 8- [ e

and one more relation (7).

)

Alistair Savage (Ottawa) Quantum Heisenberg categorification October 27, 2018 6 /14



The quantum Heisenberg category

Third approach: Note that we do not need the dot generator. It can be

recovered via

o]

The extra relation (t) is that this dot is invertible.

Theorem (Brundan—S.—Webster)
@ All three approaches define isomorphic categories (Heisg(z,t)).

@ Heisk(z,t) is strictly pivotal (i.e. we have isotopy invariance for
morphisms).
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Special cases

Deformed Heisenberg category (k = —1)

Heis_1(z,t) is closely related to a deformed Heisenberg category H(q?)
introduced by Licata-S. (2013).

Precisely, H(q?) is the monoidal subcategory of

Heis_1(z,—27Y), z=q—q},

consisting of all objects and morphisms that do not involve negative
powers of the dots.

Affine oriented skein category (k = 0)

Heiso(z,t) is the affine oriented skein category, an affinization of the
HOMFLY-PT skein category.
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Categorical actions (k # 0)

When k # 0, the category Heis(z,t) acts naturally on modules for
cyclotomic Hecke algebras Hy of level |k|.

We have a chain of algebras
k=H]cH cH]C-...

If £ <0, then
@ 7T acts by induction from Hi-mod to Hf 41-mod,
@ | acts by restriction from H,{-mod to Hf:_l—mod.

The morphisms (diagrams) act by certain natural transformations.

Fact that Heisg(z,t) is pivotal corresponds to fact that induction and
restriction are biadjoint.

In other words H,{ is a Frobenius extension of H,J:_l
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Categorical actions (k = 0)

Suppose k=0 and t = ¢".

Heiso(z,t) acts on representations of U, (gl,):
e T tensors with natural module V,

@ | tensors with dual V*.

This action extends the monoidal functor
HOMPFLY-PT skein category — cat of fd U,(gl,,)-modules

originally constructed by Turaev.

The center of Heiso(z,t) maps surjectively to the center of U,(gl,,). So
we get a diagrammatic calculus for this center.
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Basis theorem

For many applications, one needs to know a basis for morphism spaces in
Heisk(z,t).

Usual approach: Use
@ categorical actions described above,
@ known bases for the algebras involved (an and U,(gl,,)),

e asymptotic faithfulness (as n — o).

However, this approach fails for Heisy(z,t), k # 0, due to Heisg(z,t)
having a larger center than expected.

Solution: Use “unfurling” technique of B. Webster. See upcoming talk of
J. Brundan.
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Quantum Frobenius Heisenberg category

Generally, can incorporate a Frobenius superalgebra F' to get a more
general quantum Frobenius Heisenberg category.

Strand can now carry tokens:

%, fer.

We have additional/modified relations:

X - X =2y b} %bv , (new skein)

beB

\f ) fV\’ Xf ) fX’
-1,

-+ inversion, etc.
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Categorical actions

Categorical actions: Largely unexplored.

Case: k=0

Obtain a Frobenius deformation of the affine oriented skein category.
Natural action is an open question for general F.

Should act on modules for some F-deformation of Uy(gl,,).

Case: k#0

Acts on cyclotomic quotients of affine Frobenius Hecke algebras.

The structure theory and rep theory of these algebras is work in progress
(with D. Rosso).

V.
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Future directions

Traces

The trace of the deformed Heisenberg category H(q*) was computed by
Cautis—Lauda-Licata—Samuelson—Sussan.

It is related to the elliptic Hall algebra.

One should be able to extend this description to the larger quantum
Heisenberg category Heisk(z,1).

Connections to Kac—Moody 2-categories (with Brundan & Webster)

Given certain categorical Heisenberg actions, one can define a categorical
Kac-Moody action.

Conversely, given certain categorical Kac—Moody actions, one can define a
categorical Heisenberg action.

This extends work with Queffelec and Yacobi, which considered the level
one case.
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