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Notation

k commutative ring with char(k) 6= 2

All algebras are associative algebras over k
q ∈ k, invertible

z ∈ k (z = q − q−1)
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Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

q-deformations of group algebras of affine Weyl groups  
connections to quantum affine Lie algebras

Representations of their cyclotomic quotients categorify highest
weight representations for Type A affine Lie algebras

Convolution algebras from double cosets for Iwahori subgroups of
algebraic groups over local fields  connections to Langlands
program
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Affine Hecke algebras (Type A)

A presentation

Generators

T1, . . . ,Tn−1, X±1 , . . . ,X
±
n

Relations

T 2
i = (q − q−1)Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

XiX
−1
i = X−1

i Xi = 1 1 ≤ i ≤ n

XiXj = XjXi 1 ≤ i , j ≤ n

TiXj = XjTi 1 ≤ i ≤ n − 1, j 6= i , i + 1

TiXiTi = Xi+1 1 ≤ i ≤ n − 1
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Frobenius (Super)Algebras

Definition

A Frobenius superalgebra A is a finite dimensional associative
k-superalgebra with an even k-linear trace map

tr : A→ k

such that ker(tr) does not contain any nonzero left ideals of A.

Equivalently, the bilinear map

A× A→ k, (a, b) 7→ tr(ab)

is nondegenerate.

Nakayama automorphism

There exists an algebra automorphism ψ : A→ A such that

tr(ab) = (−1)āb̄tr(bψ(a)).

We assume for simplicity that ψ = Id (A is symmetric).
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Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.

If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.

For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1,

with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Frobenius-Hecke algebra Hn(A, z)

Fix a Frobenius algebra A, and z ∈ k.
If {b}b∈B is a basis of A, we denote by {b∨}b∈B the dual basis that
satisfies

tr(bc∨) = δb,c .

Then, the element
∑

b∈B b ⊗ b∨ ∈ A⊗ A is independent of the choice of
basis B.
For a ∈ A, denote ai = 1⊗i−1 ⊗ a⊗ 1⊗n−i−1 ∈ A⊗n.

Frobenius-Hecke algebra Hn(A, z)

Generated by A⊗n, T1, . . . ,Tn−1, with relations

T 2
i = zti,i+1Ti + 1 1 ≤ i ≤ n − 1

TiTj = TjTi |i − j | > 1

TiTi+1Ti = Ti+1TiTi+1 1 ≤ i ≤ n − 2

Tiaj = asi (j)Ti 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n

where ti,j =
∑

b∈B bib
∨
j .

6 / 14



Special Cases

Hn(A, z)

Wreath product
A⊗n o Sn

z = 0

Yokonuma-Hecke algebras

A = k[Cd ]
z = (q − q−1)/d

Iwahori-Hecke
algebras (type A)

A = k
z = q − q−1

Cd is the Cyclic group of order d .
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Affine Frobenius-Hecke algebra Haff
n (A, z)

Fix A, z as before.

Affine Frobenius-Hecke algebra

Generated by Hn(A, z), X±1 , . . . ,X
±
n , with additional relations

XiX
−1
i = X−1

i Xi = 1 1 ≤ i ≤ n

XiXj = XjXi 1 ≤ i , j ≤ n

TiXj = XjTi 1 ≤ i ≤ n − 1, j 6= i , i + 1

TiXiTi = Xi+1 1 ≤ i ≤ n − 1

aiXj = Xjai 1 ≤ i , j ≤ n
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Connections with other algebras in the literature

Haff
n (A, z)

Affine wreath product
algebras (Savage)

Affinized symmetric
algebras (Kleshchev-Muth)

degen.

ψ = Id
A even

Affine Yokonuma
Hecke algebras

(Chlouveraki-Poulain d’Andecy)

A = k[Cd ]
z = (q − q−1)/d

Affine Hecke
algebras (type A)

A = k
z = q − q−1

Cd is the Cyclic group of order d .
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Some Results (R.-Savage)

Basis Theorem

The map

A⊗n ⊗ k[X±1 , . . . ,X
±
n ]⊗H → Haff

n (A), a⊗ p ⊗ Tw 7→ apTw ,

is an isomorphism of k-modules.

Center

If z is not a zero divisor and K = ker(t1,2) ⊆ A⊗ A is such that
K = KS2 , then

Z (Haff
n (A, z)) = (Z (A)⊗n)Sn ⊗ (k[X±1 , . . . ,X

±
n ])Sn .

Mackey Theorem

There is a version of the Mackey theorem for induction and restriction to
parabolic subalgebras.
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Cyclotomic Quotients

Let
f = X d

1 + ad−1X
d−1
1 + . . .+ a1X1 + a0 ∈ Haff

n (A, z),

be a monic polynomial of degree d in X1 with coefficients in
Z (A)⊗ 1⊗n−1 ⊆ A⊗n, we also assume that a0 is invertible.

Cyclotomic Frobenius-Hecke algebra

For a fixed f , we define the corresponding cyclotomic Frobenius Hecke
algebra to be

H f
n (A, z) := Haff

n (A, z)/〈f 〉,

where 〈f 〉 denotes the two-sided ideal generated by f .
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Some Results (R.-Savage)

Basis theorem for cyclotomic quotients

The canonical images of the elements

{Xλ1
1 · · ·X

λn
n aTw | 0 ≤ λ1, . . . , λn < d , a ∈ A⊗n,w ∈ Sn}

form a basis of H f
n (A, z).

Mackey Theorem

There is a version of the Mackey theorem for induction and restriction to
parabolic subalgebras.
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Things to do

Trace map on H f
n (A, z).

Representations.

Categorification (Brundan-Savage).
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Thank you!
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