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o All algebras are associative algebras over k
@ g €k, invertible
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Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

@ g-deformations of group algebras of affine Weyl groups ~~
connections to quantum affine Lie algebras

@ Representations of their cyclotomic quotients categorify highest
weight representations for Type A affine Lie algebras

@ Convolution algebras from double cosets for lwahori subgroups of
algebraic groups over local fields ~» connections to Langlands
program
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A presentation

Generators
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Tiyeooy Tom1, Xy ) X
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Frobenius (Super)Algebras

Definition

A Frobenius superalgebra A is a finite dimensional associative
k-superalgebra with an even k-linear trace map

tr: A—k

such that ker(tr) does not contain any nonzero left ideals of A.

Equivalently, the bilinear map
Ax A=k, (a, b) — tr(ab)

is nondegenerate.

Nakayama automorphism

There exists an algebra automorphism ¢ : A — A such that

tr(ab) = (—1)Ptr(by(a)).

We assume for simplicity that ¢ = Id (A is symmetric).
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Til; = T;T; li—jl>1
TiTigaTi=TiaTiTipa 1<i<n-2

T,-aj:as,.(j)T,- 1<i<n-11<j<n

where tij= ZbeB b,ij
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Fix A, z as before.

Affine Frobenius-Hecke algebra

Generated by H,(A, z), X, ..., X;F, with additional relations

XX '=X"'X,=1 1<i<n
XiX;=X;X; 1<ij<n
TX;=XT, 1<i<n-1, j#ii+1
TiXiTi = Xiq1 1<i<n-1
a;X; = Xjaj 1<i,j<n
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Connections with other algebras in the literature

Affine wreath product

aff
H:' (A, 2) \% algebras (Savage)
v =1d
) A even
z2=\(@-97)/d  Affinized symmetric
algebras (Kleshchev-Muth)

Affine Yokonuma
Hecke algebras
(Chlouveraki-Poulain d'Andecy)

Affine Hecke
algebras (type A)

Cy is the Cyclic group of order d.
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The map
A2 QK[XE, .. XE|oH - H(4), a®p®T,—apT,,

is an isomorphism of k-modules.

Center

If z is not a zero divisor and K = ker(t;2) C A® A is such that
K = K%, then

| A

Z(H(A, 2)) = (Z(A)®")> @ (KIXT, ..., X5 ])™.

Mackey Theorem

There is a version of the Mackey theorem for induction and restriction to
parabolic subalgebras.
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Cyclotomic Quotients

Let
f=Xd+ag 1 X8 +...+a Xy +ag € H(A z2),

be a monic polynomial of degree d in X with coefficients in
Z(A) ® 19m=1 C A®" e also assume that ag is invertible.

Cyclotomic Frobenius-Hecke algebra

For a fixed f, we define the corresponding cyclotomic Frobenius Hecke

algebra to be
H:(sz) = Hr?ff(A’Z)/<f>’

where (f) denotes the two-sided ideal generated by f.
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The canonical images of the elements
(X1 XMaT, |[0< A,...,\p<d, ac A" weS,}

form a basis of Hf (A, z).

Basis theorem for cyclotomic quotients

Mackey Theorem

| \

There is a version of the Mackey theorem for induction and restriction to
parabolic subalgebras.

A\
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Things to do

@ Trace map on Hf(A, z).
@ Representations.

o Categorification (Brundan-Savage).
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Thank you!



