

Affine Frobenius-Hecke algebras

Daniele Rosso (Indiana University Northwest)
joint with A. Savage (University of Ottawa)

AMS 2018 Fall Western Sectional Meeting
San Francisco State University

October 27, 2018

Notation

- \mathbb{k} commutative ring with $\text{char}(\mathbb{k}) \neq 2$

Notation

- \mathbb{k} commutative ring with $\text{char}(\mathbb{k}) \neq 2$
- All algebras are associative algebras over \mathbb{k}

Notation

- \mathbb{k} commutative ring with $\text{char}(\mathbb{k}) \neq 2$
- All algebras are associative algebras over \mathbb{k}
- $q \in \mathbb{k}$, invertible

Notation

- \mathbb{k} commutative ring with $\text{char}(\mathbb{k}) \neq 2$
- All algebras are associative algebras over \mathbb{k}
- $q \in \mathbb{k}$, invertible
- $z \in \mathbb{k}$

Notation

- \mathbb{k} commutative ring with $\text{char}(\mathbb{k}) \neq 2$
- All algebras are associative algebras over \mathbb{k}
- $q \in \mathbb{k}$, invertible
- $z \in \mathbb{k}$ ($z = q - q^{-1}$)

Affine Hecke algebras (Type A)

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

- q -deformations of group algebras of affine Weyl groups

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

- q -deformations of group algebras of affine Weyl groups \rightsquigarrow connections to quantum affine Lie algebras

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

- q -deformations of group algebras of affine Weyl groups \rightsquigarrow connections to quantum affine Lie algebras
- Representations of their cyclotomic quotients categorify highest weight representations for Type A affine Lie algebras

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

- q -deformations of group algebras of affine Weyl groups \rightsquigarrow connections to quantum affine Lie algebras
- Representations of their cyclotomic quotients categorify highest weight representations for Type A affine Lie algebras
- Convolution algebras from double cosets for Iwahori subgroups of algebraic groups over local fields

Affine Hecke algebras (Type A)

Important class of algebras studied by a lot of people (too many to list!)

- q -deformations of group algebras of affine Weyl groups \rightsquigarrow connections to quantum affine Lie algebras
- Representations of their cyclotomic quotients categorify highest weight representations for Type A affine Lie algebras
- Convolution algebras from double cosets for Iwahori subgroups of algebraic groups over local fields \rightsquigarrow connections to Langlands program

Affine Hecke algebras (Type A)

Affine Hecke algebras (Type A)

A presentation

Affine Hecke algebras (Type A)

A presentation

Generators

$T_1, \dots, T_{n-1}, X_1^\pm, \dots, X_n^\pm$

Affine Hecke algebras (Type A)

A presentation

Generators

$T_1, \dots, T_{n-1}, X_1^\pm, \dots, X_n^\pm$

Relations

$$T_i^2 = (q - q^{-1}) T_i + 1 \quad 1 \leq i \leq n-1$$

$$T_i T_j = T_j T_i \quad |i - j| > 1$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad 1 \leq i \leq n-2$$

Affine Hecke algebras (Type A)

A presentation

Generators

$T_1, \dots, T_{n-1}, X_1^\pm, \dots, X_n^\pm$

Relations

$$T_i^2 = (q - q^{-1}) T_i + 1 \quad 1 \leq i \leq n-1$$

$$T_i T_j = T_j T_i \quad |i - j| > 1$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad 1 \leq i \leq n-2$$

$$X_i X_i^{-1} = X_i^{-1} X_i = 1 \quad 1 \leq i \leq n$$

$$X_i X_j = X_j X_i \quad 1 \leq i, j \leq n$$

Affine Hecke algebras (Type A)

A presentation

Generators

$$T_1, \dots, T_{n-1}, X_1^\pm, \dots, X_n^\pm$$

Relations

$$T_i^2 = (q - q^{-1}) T_i + 1 \quad 1 \leq i \leq n-1$$

$$T_i T_j = T_j T_i \quad |i - j| > 1$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad 1 \leq i \leq n-2$$

$$X_i X_i^{-1} = X_i^{-1} X_i = 1 \quad 1 \leq i \leq n$$

$$X_i X_j = X_j X_i \quad 1 \leq i, j \leq n$$

$$T_i X_j = X_j T_i \quad 1 \leq i \leq n-1, j \neq i, i+1$$

$$T_i X_i T_i = X_{i+1} \quad 1 \leq i \leq n-1$$

Frobenius (Super)Algebras

Definition

A *Frobenius superalgebra* A is a finite dimensional associative \mathbb{k} -superalgebra with an even \mathbb{k} -linear *trace* map

$$\text{tr} : A \rightarrow \mathbb{k}$$

such that $\ker(\text{tr})$ does not contain any nonzero left ideals of A .

Frobenius (Super)Algebras

Definition

A *Frobenius superalgebra* A is a finite dimensional associative \mathbb{k} -superalgebra with an even \mathbb{k} -linear *trace* map

$$\text{tr} : A \rightarrow \mathbb{k}$$

such that $\ker(\text{tr})$ does not contain any nonzero left ideals of A .

Equivalently, the bilinear map

$$A \times A \rightarrow \mathbb{k}, \quad (a, b) \mapsto \text{tr}(ab)$$

is nondegenerate.

Frobenius (Super)Algebras

Definition

A *Frobenius superalgebra* A is a finite dimensional associative \mathbb{k} -superalgebra with an even \mathbb{k} -linear *trace* map

$$\text{tr} : A \rightarrow \mathbb{k}$$

such that $\ker(\text{tr})$ does not contain any nonzero left ideals of A .

Equivalently, the bilinear map

$$A \times A \rightarrow \mathbb{k}, \quad (a, b) \mapsto \text{tr}(ab)$$

is nondegenerate.

Nakayama automorphism

There exists an algebra automorphism $\psi : A \rightarrow A$ such that

$$\text{tr}(ab) = (-1)^{\bar{a}\bar{b}} \text{tr}(b\psi(a)).$$

Frobenius (Super)Algebras

Definition

A *Frobenius superalgebra* A is a finite dimensional associative \mathbb{k} -superalgebra with an even \mathbb{k} -linear *trace* map

$$\text{tr} : A \rightarrow \mathbb{k}$$

such that $\ker(\text{tr})$ does not contain any nonzero left ideals of A .

Equivalently, the bilinear map

$$A \times A \rightarrow \mathbb{k}, \quad (a, b) \mapsto \text{tr}(ab)$$

is nondegenerate.

Nakayama automorphism

There exists an algebra automorphism $\psi : A \rightarrow A$ such that

$$\text{tr}(ab) = (-1)^{\bar{a}\bar{b}} \text{tr}(b\psi(a)).$$

We assume for simplicity that $\psi = \text{Id}$ (A is symmetric).

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Then, the element $\sum_{b \in B} b \otimes b^\vee \in A \otimes A$ is independent of the choice of basis B .

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Then, the element $\sum_{b \in B} b \otimes b^\vee \in A \otimes A$ is independent of the choice of basis B .

For $a \in A$, denote $a_i = 1^{\otimes i-1} \otimes a \otimes 1^{\otimes n-i-1} \in A^{\otimes n}$.

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Then, the element $\sum_{b \in B} b \otimes b^\vee \in A \otimes A$ is independent of the choice of basis B .

For $a \in A$, denote $a_i = 1^{\otimes i-1} \otimes a \otimes 1^{\otimes n-i-1} \in A^{\otimes n}$.

Frobenius-Hecke algebra $H_n(A, z)$

Generated by $A^{\otimes n}$, T_1, \dots, T_{n-1} ,

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Then, the element $\sum_{b \in B} b \otimes b^\vee \in A \otimes A$ is independent of the choice of basis B .

For $a \in A$, denote $a_i = 1^{\otimes i-1} \otimes a \otimes 1^{\otimes n-i-1} \in A^{\otimes n}$.

Frobenius-Hecke algebra $H_n(A, z)$

Generated by $A^{\otimes n}$, T_1, \dots, T_{n-1} , with relations

$$T_i^2 = zt_{i,i+1}T_i + 1 \quad 1 \leq i \leq n-1$$

$$T_i T_j = T_j T_i \quad |i - j| > 1$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad 1 \leq i \leq n-2$$

$$T_i a_j = a_{s_i(j)} T_i \quad 1 \leq i \leq n-1, 1 \leq j \leq n$$

Frobenius-Hecke algebra $H_n(A, z)$

Fix a Frobenius algebra A , and $z \in \mathbb{k}$.

If $\{b\}_{b \in B}$ is a basis of A , we denote by $\{b^\vee\}_{b \in B}$ the *dual basis* that satisfies

$$\text{tr}(bc^\vee) = \delta_{b,c}.$$

Then, the element $\sum_{b \in B} b \otimes b^\vee \in A \otimes A$ is independent of the choice of basis B .

For $a \in A$, denote $a_i = 1^{\otimes i-1} \otimes a \otimes 1^{\otimes n-i-1} \in A^{\otimes n}$.

Frobenius-Hecke algebra $H_n(A, z)$

Generated by $A^{\otimes n}$, T_1, \dots, T_{n-1} , with relations

$$T_i^2 = zt_{i,i+1}T_i + 1 \quad 1 \leq i \leq n-1$$

$$T_i T_j = T_j T_i \quad |i - j| > 1$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1} \quad 1 \leq i \leq n-2$$

$$T_i a_j = a_{s_i(j)} T_i \quad 1 \leq i \leq n-1, 1 \leq j \leq n$$

where $t_{i,j} = \sum_{b \in B} b_i b_j^\vee$.

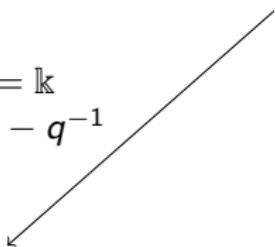
Special Cases

$$H_n(A, z)$$

Special Cases

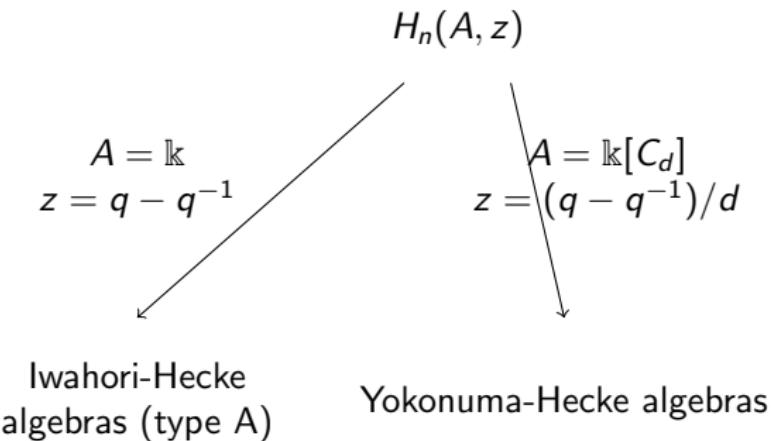
$$H_n(A, z)$$

$$\begin{aligned} A &= \mathbb{k} \\ z &= q - q^{-1} \end{aligned}$$



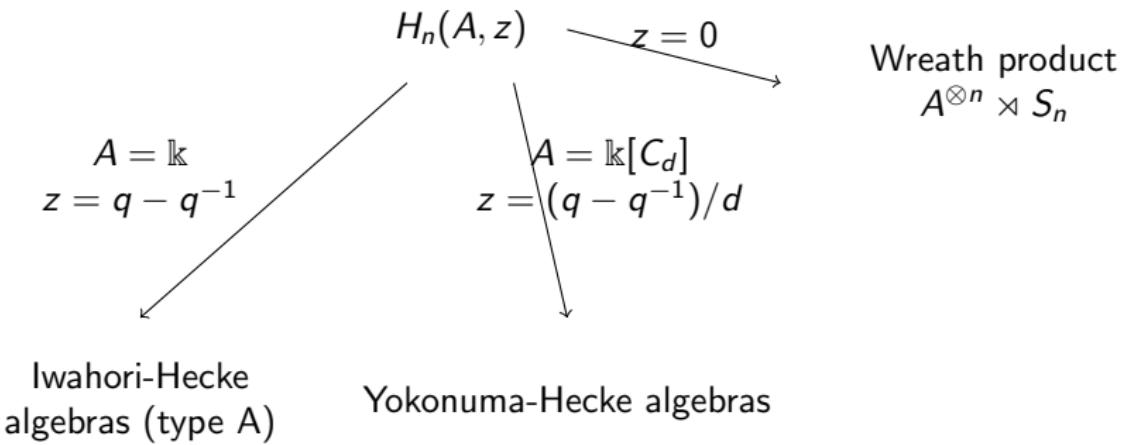
Iwahori-Hecke
algebras (type A)

Special Cases



C_d is the Cyclic group of order d .

Special Cases



C_d is the Cyclic group of order d .

Affine Frobenius-Hecke algebra $H_n^{\text{aff}}(A, z)$

Fix A, z as before.

Affine Frobenius-Hecke algebra $H_n^{\text{aff}}(A, z)$

Fix A, z as before.

Affine Frobenius-Hecke algebra

Generated by $H_n(A, z)$, X_1^\pm, \dots, X_n^\pm ,

Affine Frobenius-Hecke algebra $H_n^{\text{aff}}(A, z)$

Fix A, z as before.

Affine Frobenius-Hecke algebra

Generated by $H_n(A, z)$, X_1^\pm, \dots, X_n^\pm , with additional relations

$$X_i X_i^{-1} = X_i^{-1} X_i = 1 \quad 1 \leq i \leq n$$

$$X_i X_j = X_j X_i \quad 1 \leq i, j \leq n$$

$$T_i X_j = X_j T_i \quad 1 \leq i \leq n-1, j \neq i, i+1$$

$$T_i X_i T_i = X_{i+1} \quad 1 \leq i \leq n-1$$

$$a_i X_j = X_j a_i \quad 1 \leq i, j \leq n$$

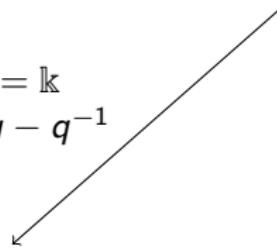
Connections with other algebras in the literature

$$H_n^{\text{aff}}(A, z)$$

Connections with other algebras in the literature

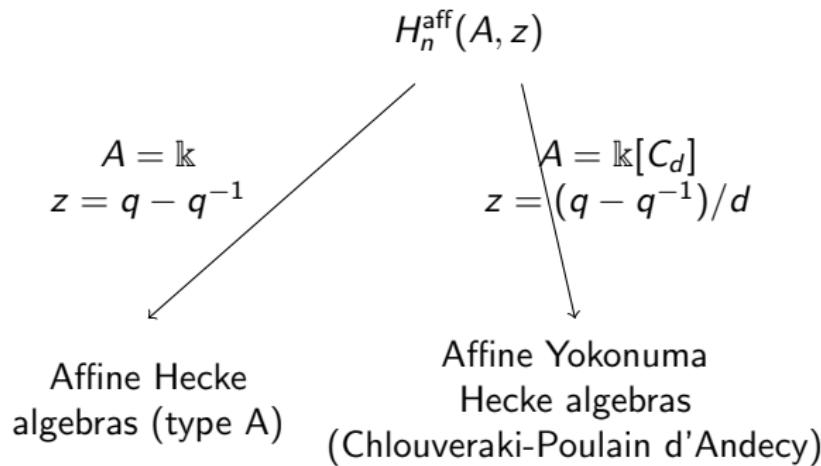
$$H_n^{\text{aff}}(A, z)$$

$$\begin{aligned} A &= \mathbb{k} \\ z &= q - q^{-1} \end{aligned}$$



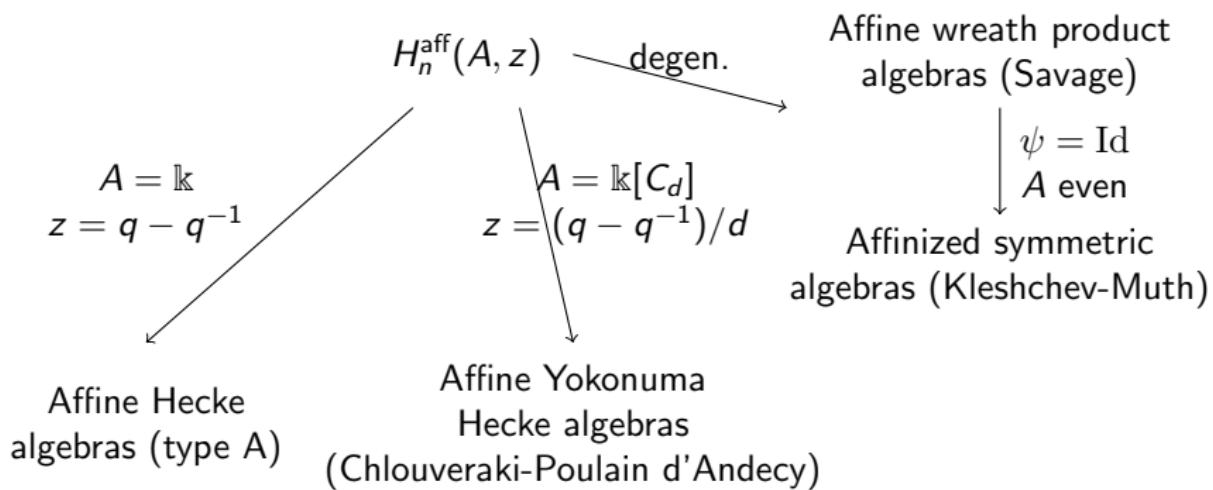
Affine Hecke
algebras (type A)

Connections with other algebras in the literature



C_d is the Cyclic group of order d .

Connections with other algebras in the literature



C_d is the Cyclic group of order d .

Some Results (R.-Savage)

Some Results (R.-Savage)

Basis Theorem

The map

$$A^{\otimes n} \otimes \mathbb{k}[X_1^{\pm}, \dots, X_n^{\pm}] \otimes \mathcal{H} \rightarrow H_n^{\text{aff}}(A), \quad \mathbf{a} \otimes p \otimes T_w \mapsto \mathbf{a}pT_w,$$

is an isomorphism of \mathbb{k} -modules.

Some Results (R.-Savage)

Basis Theorem

The map

$$A^{\otimes n} \otimes \mathbb{k}[X_1^{\pm}, \dots, X_n^{\pm}] \otimes \mathcal{H} \rightarrow H_n^{\text{aff}}(A), \quad \mathbf{a} \otimes p \otimes T_w \mapsto \mathbf{a}pT_w,$$

is an isomorphism of \mathbb{k} -modules.

Center

If z is not a zero divisor and $K = \ker(t_{1,2}) \subseteq A \otimes A$ is such that $K = K^{S_2}$, then

$$Z(H_n^{\text{aff}}(A, z)) = (Z(A)^{\otimes n})^{S_n} \otimes (\mathbb{k}[X_1^{\pm}, \dots, X_n^{\pm}])^{S_n}.$$

Some Results (R.-Savage)

Basis Theorem

The map

$$A^{\otimes n} \otimes \mathbb{k}[X_1^{\pm}, \dots, X_n^{\pm}] \otimes \mathcal{H} \rightarrow H_n^{\text{aff}}(A), \quad \mathbf{a} \otimes p \otimes T_w \mapsto \mathbf{a}pT_w,$$

is an isomorphism of \mathbb{k} -modules.

Center

If z is not a zero divisor and $K = \ker(t_{1,2}) \subseteq A \otimes A$ is such that $K = K^{S_2}$, then

$$Z(H_n^{\text{aff}}(A, z)) = (Z(A)^{\otimes n})^{S_n} \otimes (\mathbb{k}[X_1^{\pm}, \dots, X_n^{\pm}])^{S_n}.$$

Mackey Theorem

There is a version of the Mackey theorem for induction and restriction to parabolic subalgebras.

Cyclotomic Quotients

Let

$$f = X_1^d + \mathbf{a}_{d-1}X_1^{d-1} + \dots + \mathbf{a}_1X_1 + \mathbf{a}_0 \in H_n^{\text{aff}}(A, z),$$

be a monic polynomial of degree d in X_1 with coefficients in $Z(A) \otimes 1^{\otimes n-1} \subseteq A^{\otimes n}$, we also assume that \mathbf{a}_0 is invertible.

Cyclotomic Quotients

Let

$$f = X_1^d + \mathbf{a}_{d-1}X_1^{d-1} + \dots + \mathbf{a}_1X_1 + \mathbf{a}_0 \in H_n^{\text{aff}}(A, z),$$

be a monic polynomial of degree d in X_1 with coefficients in $Z(A) \otimes 1^{\otimes n-1} \subseteq A^{\otimes n}$, we also assume that \mathbf{a}_0 is invertible.

Cyclotomic Frobenius-Hecke algebra

For a fixed f , we define the corresponding *cyclotomic Frobenius Hecke algebra* to be

$$H_n^f(A, z) := H_n^{\text{aff}}(A, z)/\langle f \rangle,$$

where $\langle f \rangle$ denotes the two-sided ideal generated by f .

Some Results (R.-Savage)

Some Results (R.-Savage)

Basis theorem for cyclotomic quotients

The canonical images of the elements

$$\{X_1^{\lambda_1} \cdots X_n^{\lambda_n} \mathbf{a} T_w \mid 0 \leq \lambda_1, \dots, \lambda_n < d, \mathbf{a} \in A^{\otimes n}, w \in S_n\}$$

form a basis of $H_n^f(A, z)$.

Some Results (R.-Savage)

Basis theorem for cyclotomic quotients

The canonical images of the elements

$$\{X_1^{\lambda_1} \cdots X_n^{\lambda_n} \mathbf{a} T_w \mid 0 \leq \lambda_1, \dots, \lambda_n < d, \mathbf{a} \in A^{\otimes n}, w \in S_n\}$$

form a basis of $H_n^f(A, z)$.

Mackey Theorem

There is a version of the Mackey theorem for induction and restriction to parabolic subalgebras.

Things to do

- Trace map on $H_n^f(A, z)$.

Things to do

- Trace map on $H_n^f(A, z)$.
- Representations.

Things to do

- Trace map on $H_n^f(A, z)$.
- Representations.
- Categorification (Brundan-Savage).

Thank you!