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Categorification of cyclotomic ring

For a closed 3-manifold M3 and a prime p, Reshetikhin-Turaev and

Witten constructed an invariant Z (M3) ∈ Op where

Op = Z[q]/Φp(q2)

Φp(q) = qp−1 + · · ·+ 1.
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Categorification of cyclotomic ring

Crane-Frenkel (1994) outlined the program of categorification. The

goal is to construct a homology theory of 3-manifolds Z̃ (M3)

which is functorial under cobordisms.

Thus if W 4 is a cobordism with between M3 and N3 then we get a

map

Z̃ (W 4) : Z̃ (M3)→ Z̃ (N3)

which would hopefully be an invariant of 4-manifolds.
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Categorification of cyclotomic ring

The first task is to find a monoidal category whose Grothendieck

group is isomorphic to Op.

Khovanov solved this problem.

I Let k be a field of characteristic p.

I Let Hp = k[∂]/(∂p) be a graded algebra where the degree of

∂ is 2.

I Hp has a unique simple module (up to isomorphism and grade

shift).

I Let L be the 1-dimensional module concentrated in degree 0.
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Categorification of cyclotomic ring

This implies that K0(Hp-gmod) ∼= Z[q, q−1] where [L〈r〉] 7→ qr .

As a module over itself, Hp has a filtration with subquotients

L, L〈2〉, . . . , L〈2(p − 1)〉.
Thus in the Grothendieck group [Hp] = q2(p−1) + · · ·+ 1.

In order to categorify Op we need a category where Hp
∼= 0.
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Categorification of cyclotomic ring

Let Hp-gmod be the stable category of Hp-modules.

Objects: same as Hp-gmod.

Morphisms:

HomHp-gmod(M,N) = HomHp-gmod(M,N)/I (M,N)

where I (M,N) is the subspace of maps which factor through Hp.

Since the identity map of Hp is in the subspace we get the

following result due to Khovanov.

Lemma

K0(Hp-gmod) ∼= Op.
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Categorification of cyclotomic ring

Since the representation theory of the small quantum group is

defined over Op, it is important to categorify modules over this

ring. Khovanov outlined a procedure to do this.

I Let A be a Z-graded algebra over k with a derivation ∂ of

degree 2 such that ∂p = 0.

I A is then called a p-DG algebra.
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Categorification of cyclotomic ring

I Let N be a p-DG module over A. This means N has a

derivation which is compatible with the derivation on A.

I Let M ∈ Hp-gmod and N ∈ A-pdgmod.

Then M ⊗ N ∈ A-pdgmod.

a ∈ A acts on the second factor and ∂ acts by ∂ ⊗ 1 + 1⊗ ∂.

This gives a functor

Hp-gmod× A-pdgmod→ A-pdgmod.
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Categorification of cyclotomic ring

Let N ′,N ′′ ∈ A-pdgmod.

f : N ′ → N ′′

is said to be nullhomotopic if there exists a map H : N ′ → N ′′ such

that

f =

p−1∑
i=0

∂iH∂p−1−i .

Let A-pdgmod be the homotopy category of A-pdgmod where we

quotient out by nullhomotopic maps.
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Categorification of cyclotomic ring

Khovanov proved that there’s a functor

Hp-gmod× A-pdgmod→ A-pdgmod.

This endows K0(A-pdgmod) with the structure of a module over

K0(Hp-gmod) ∼= Op.
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Categorification of cyclotomic ring

Let f : N ′ → N ′′ be a morphism in A-pdgmod.

f is said to be a quasi-isomorphism if it restricts to an isomorphism

in Hp-gmod.

Then we may form the derived category D(A).

Khovanov proved that there’s a functor

Hp-gmod× D(A)→ D(A)

which then endows K0(D(A)) with the structure of an Op-module.
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Quantum sl2 at root of unity

I Let U̇ be Op-algebra generated by 1n, 1n+2aE
(a)1n,

1n−2aF
(a)1n for n ∈ Z, subject to standard relations.

I u+ ⊂ u̇ ⊂ U̇ where u̇ is the small quantum group and

u+ = Op[E ]/(Ep).

I Let Vl be the Weyl module for U̇. It has basis {v0, . . . , vl}.

I Vr ⊗ Vs has basis {vb♦vd |0 ≤ b ≤ r , 0 ≤ d ≤ s} given by

vb � vd =

F (d)E (a)(vr ⊗ v0) if b ≤ c

E (a)F (d)(vr ⊗ v0) if b ≥ c

where a + b = r and c + d = s.
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p-DG nilHecke algebra

Let NHn be the nilHecke algebra of rank n over k.

Generators: y1, . . . , yn and ψ1, . . . , ψn−1.

Relations:

I yiyj = yjyi

I ψ2
i = 0

I ψiψj = ψjψi for |i − j | > 1

I ψiψjψi = ψjψiψj for |i − j | = 1

I yiψi − ψiyi+1 = 1 = ψiyi − yi+1ψi .

NHn has the structure of a p-DG algebra given by

∂(yi ) = y2i ∂(ψi ) = −yiψi − ψiyi+1.
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p-DG nilHecke algebra

Theorem (Khovanov-Qi)

There is an isomorphism
⊕

n≥0 K0(D(NHn)) ∼= u+.

Induction and restriction functors descend to multiplication and

comultiplication in the Grothendieck group.

Theorem (Elias-Qi)

The Lauda category U has a derivation ∂ so that K0(D(U , ∂)) ∼= u̇.

Theorem (Elias-Qi)

The Khovanov-Lauda-Mackaay-Stosic category U̇ has a derivation

∂ so that K0(D(U̇ , ∂)) ∼= U̇.
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Categorification of Vr ⊗ Vs

Let NH l
n = NHn/(y l1) be the cyclotomic nilHecke algebra.

There are induction and restriction functors

F : NH l
n-gmod→ NH l

n+1-gmod E : NH l
n-gmod→ NH l

n−1-gmod

giving rise to a categorical sl2 (for generic q) action on

l⊕
n=0

NH l
n-gmod

(Kang-Kashiwara, Chuang-Rouquier, Webster)
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Categorification of Vl

NH l
n is a p-DG algebra and F and E are p-DG functors and there

is an analogue of the previous result:

Theorem (Elias-Qi, Khovanov-Qi-S)

1. There’s an action of (U̇ , ∂) on

l⊕
n=0

NH l
n-pdgmod.

2. When l ≤ p − 1,
l⊕

n=0

D(NH l
n, ∂)

categorifies the irreducible Weyl module Vl .

Joshua Sussan (Joint with Mikhail Khovanov and You Qi) p-DG structures in higher representation theory.



Categorification of Vr ⊗ Vs

In order to categorify tensor products, we consider certain

cyclotomic nilHecke modules introducted by Hu and Mathas.

I Let P l
n be set of l-tuples whose entries are either 0 or 1 with a

total of n ones.

I To λ ∈ P l
n, with ones in positions a1, . . . , an, there is

monomial yλ = y l−a11 · · · y l−ann .

I There’s a p-DG NH l
n-module G (λ) = yλNH l

n.

I The p-DG quiver Schur algebra is

Sn(l) = EndNH l
n
(
⊕
λ∈P l

n

G (λ)).
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Categorification of Vr ⊗ Vs

Example: General l and n = 1. In this case NH l
1
∼= k[y ]/(y l) and

S1(l) is isomorphic to A!
l where A!

l is the quotient of the path

algebra of

· · ·
1 2 n − 1 n

by the relations

(1|2|1) = 0 (i |i + 1|i) = (i |i − 1|i)

for i = 2, . . . , l − 1.

A!
l has a p-DG structure determined by

∂(i) = 0 ∂(i + 1|i) = 0 ∂(i |i + 1) = (i |i + 1|i |i + 1)
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Categorification of Vr ⊗ Vs

I Fix r + s = l , a + b = r , c + d = s.

I Let P r ,s
n ⊂ P l

n be tuples of form λ = (0a1b|0c1d).

I To such a λ, there is a certain idempotent eλ ∈ NH l
n.

I eλG (λ) is a p-DG submodule of G (λ).

I Then we have the p-DG algebra

Sn(r , s) = EndNH l
n
(
⊕
λ∈Pr,s

n

eλG (λ))
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Categorification of Vr ⊗ Vs

Theorem (Khovanov-Qi-S)

1. There’s an action of (U̇ , ∂) on

S(r , s) :=
r+s⊕
n=0

Sn(r , s)-pdgmod

2. The action of D(U̇ , ∂) ∼= U̇ on D(S(r , s), ∂) categorifies

Vr ⊗ Vs .
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