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Categorification of cyclotomic ring

For a closed 3-manifold M3 and a prime p, Reshetikhin-Turaev and

Witten constructed an invariant Z(M3) € O, where

0p = Z[q]/®p(q°)
®y(q)=¢° 4+ + 1L
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Categorification of cyclotomic ring

Crane-Frenkel (1994) outlined the program of categorification. The
goal is to construct a homology theory of 3-manifolds Z(I\/I3)
which is functorial under cobordisms.

Thus if W* is a cobordism with between M3 and N3 then we get a
map

Z(W*): Z(M®) — Z(N?)

which would hopefully be an invariant of 4-manifolds.
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Categorification of cyclotomic ring

The first task is to find a monoidal category whose Grothendieck
group is isomorphic to Op.
Khovanov solved this problem.
> Let k be a field of characteristic p.
» Let H, =k[0]/(0P) be a graded algebra where the degree of
0 is 2.
» Hp has a unique simple module (up to isomorphism and grade
shift).

> Let L be the 1-dimensional module concentrated in degree 0.
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Categorification of cyclotomic ring

This implies that Ko(Hp-gmod) = Z[q, g~] where [L(r)] — q".
As a module over itself, H, has a filtration with subquotients
LL@),. .., L2(p—1)).

Thus in the Grothendieck group [H,] = ¢?(P~1) + ... + 1.

In order to categorify O, we need a category where H, = 0.
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Categorification of cyclotomic ring

Let H,-gmod be the stable category of H,-modules.
Objects: same as H,-gmod.

Morphisms:

Hompy,-gmod (M, N) = Homp,-gmoa (M, N)/1(M, N)

where /(M, N) is the subspace of maps which factor through Hp.
Since the identity map of H, is in the subspace we get the

following result due to Khovanov.

Lemma
Ko(Hp-gmod) = Q.
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Categorification of cyclotomic ring

Since the representation theory of the small quantum group is
defined over O, it is important to categorify modules over this

ring. Khovanov outlined a procedure to do this.

> Let A be a Z-graded algebra over k with a derivation 0 of
degree 2 such that 9° = 0.

» A is then called a p-DG algebra.
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Categorification of cyclotomic ring

» Let N be a p-DG module over A. This means N has a

derivation which is compatible with the derivation on A.

> Let M € H,-gmod and N € A-pdgmod.

Then M ® N € A-pdgmod.
a € A acts on the second factor and 9 acts by 0 ® 1+ 1® 0.

This gives a functor

Hp-gmod x A-pdgmod — A-pdgmod.
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Categorification of cyclotomic ring

Let N/, N € A-pdgmod.
foN — N

is said to be nullhomotopic if there exists a map H: N — N” such

that
p—1

f=> 0HP
i=0
Let A-pdgmod be the homotopy category of A-pdgmod where we

quotient out by nullhomotopic maps.
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Categorification of cyclotomic ring

Khovanov proved that there's a functor

Hp-gmod x A-pdgmod — A-pdgmod.

This endows Kp(A-pdgmod) with the structure of a module over
Ko(Hp-gmod) = Op,.
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Categorification of cyclotomic ring

Let f: N — N’ be a morphism in A-pdgmod.

f is said to be a quasi-isomorphism if it restricts to an isomorphism
in Hp-gmod.

Then we may form the derived category D(A).

Khovanov proved that there's a functor
Hp-gmod x D(A) — D(A)

which then endows Ko(D(A)) with the structure of an Op-module.
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Quantum sl at root of unity

» Let U be Op-algebra generated by 1,, 1,,+23E(a)1,,,

1,_2,F@1, for n € Z, subject to standard relations.
» ut C i C U where ¢ is the small quantum group and

ut = Op[E]/(EP).
> Let V; be the Weyl module for U. It has basis {vo,...,vi}.
» V, ® Vs has basis {vpQvy|0 < b<r,0<d <s} given by

FOEQ@ (v, @ vy) ifb<c
EQFd(v, @ v) ifb>c

Vp O Vg =

where a+b=rand c+d =s.
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p-DG nilHecke algebra

Let NH, be the nilHecke algebra of rank n over k.
Generators: y1,...,yp and ¥1,...,%5_1.

Relations:
> Yiyi = YiYi

> pjrpj = i for |i—j| > 1
> Yijbi = iy for |i — j| =1
> Yivi — Yiyit1 = 1 = Yiyi — yit1¢i.
NH,, has the structure of a p-DG algebra given by

yi) =y} oY) = —yii — Yiyis1.
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p-DG nilHecke algebra

Theorem (Khovanov-Qi)
There is an isomorphism @, o Ko(D(NH,)) = u™.

Induction and restriction functors descend to multiplication and

comultiplication in the Grothendieck group.

Theorem (Elias-Qi)
The Lauda category U has a derivation O so that Ko(D(U, 0)) = u.

Theorem (Elias-Qi)

The Khovanov-Lauda-Mackaay-Stosic category U has a derivation
d so that Ko(D(U,9)) = U.
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Categorification of V, ® V;

Let NH! = NH,,/(y{) be the cyclotomic nilHecke algebra.

There are induction and restriction functors
F: NH!-gmod — NH,I,H—gmod £: NH!-gmod — NH!_;-gmod

giving rise to a categorical sl, (for generic g) action on

/

@ NH!-gmod
n=0

(Kang-Kashiwara, Chuang-Rouquier, Webster)
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Categorification of V|

NH! is a p-DG algebra and F and £ are p-DG functors and there

is an analogue of the previous result:

Theorem (Elias-Qi, Khovanov-Qi-S)

1. There’s an action of (U, d) on

!
&P NH)-pdgmod.
n=0

2. When ! <p-—1,
/
&5 p(NH), 9)
n=0

categorifies the irreducible Weyl module V.
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Categorification of V, ® V;

In order to categorify tensor products, we consider certain
cyclotomic nilHecke modules introducted by Hu and Mathas.
» Let P! be set of /-tuples whose entries are either 0 or 1 with a

total of n ones.

» To A € P!, with ones in positions ay, ..., ap, there is
monomial y* = y/ =@ ... y/=an

» There's a p-DG NH!-module G()\) = y*NH..

» The p-DG quiver Schur algebra is

Sn(l) = Endyp, (€D 6(V).

AEP!

Joshua Sussan (Joint with Mikhail Khovanov and You Qi) p-DG structures in higher representation theory.



Categorification of V, ® V;

Example: General / and n = 1. In this case NH] = k[y]/(y') and
S1(/) is isomorphic to A} where Aj is the quotient of the path

1<>§ ...n_,1<>’,7

algebra of

by the relations
(112]1) =0 (ili + 1|i) = (i|i — 1]4)

fori=2,...,1—1.
A} has a p-DG structure determined by

a(i)=0 a(i+1]i)=0 o(ili +1) = (ili + 1]i]i + 1)
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Categorification of V, ® V;

» Fixr+s=1/,a+b=r,c+d=s.
Let Py° C P,l, be tuples of form \ = (031b|061d)_

v

v

To such a ), there is a certain idempotent ey € NH!.

v

exG(\) is a p-DG submodule of G()).

v

Then we have the p-DG algebra

Sn(r,s) = Endpyp ( @ exG(A))

AepP)®
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Categorification of V, ® V;

Theorem (Khovanov-Qi-S)

1. There’s an action of (U, d) on

r+s

S(r,s) = EB Sn(r, s)-pdgmod
n=0

2. The action of D(U,d) = U on D(S(r, s),d) categorifies
V,® V.
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