

p-DG structures in higher representation theory.

Joshua Sussan

(Joint with Mikhail Khovanov and You Qi)

October 27, 2018

Outline

- ▶ Categorification of cyclotomic ring.
- ▶ Quantum \mathfrak{sl}_2
- ▶ p -DG nilHecke algebra
- ▶ Categorification of $V_r \otimes V_s$

Categorification of cyclotomic ring

For a closed 3-manifold M^3 and a prime p , Reshetikhin-Turaev and Witten constructed an invariant $Z(M^3) \in \mathbb{O}_p$ where

$$\mathbb{O}_p = \mathbb{Z}[q]/\Phi_p(q^2)$$

$$\Phi_p(q) = q^{p-1} + \cdots + 1.$$

Categorification of cyclotomic ring

Crane-Frenkel (1994) outlined the program of categorification. The goal is to construct a homology theory of 3-manifolds $\tilde{Z}(M^3)$ which is functorial under cobordisms.

Thus if W^4 is a cobordism with boundary M^3 and N^3 then we get a map

$$\tilde{Z}(W^4): \tilde{Z}(M^3) \rightarrow \tilde{Z}(N^3)$$

which would hopefully be an invariant of 4-manifolds.

Categorification of cyclotomic ring

The first task is to find a monoidal category whose Grothendieck group is isomorphic to \mathbb{O}_p .

Khovanov solved this problem.

- ▶ Let \mathbb{k} be a field of characteristic p .
- ▶ Let $H_p = \mathbb{k}[\partial]/(\partial^p)$ be a graded algebra where the degree of ∂ is 2.
- ▶ H_p has a unique simple module (up to isomorphism and grade shift).
- ▶ Let L be the 1-dimensional module concentrated in degree 0.

Categorification of cyclotomic ring

This implies that $K_0(H_p\text{-gmod}) \cong \mathbb{Z}[q, q^{-1}]$ where $[L\langle r \rangle] \mapsto q^r$.

As a module over itself, H_p has a filtration with subquotients $L, L\langle 2 \rangle, \dots, L\langle 2(p-1) \rangle$.

Thus in the Grothendieck group $[H_p] = q^{2(p-1)} + \dots + 1$.

In order to categorify \mathbb{O}_p we need a category where $H_p \cong 0$.

Categorification of cyclotomic ring

Let $H_p\text{-gmod}$ be the stable category of H_p -modules.

Objects: same as $H_p\text{-gmod}$.

Morphisms:

$$\text{Hom}_{H_p\text{-gmod}}(M, N) = \text{Hom}_{H_p\text{-gmod}}(M, N)/I(M, N)$$

where $I(M, N)$ is the subspace of maps which factor through H_p .

Since the identity map of H_p is in the subspace we get the following result due to Khovanov.

Lemma

$$K_0(H_p\text{-gmod}) \cong \mathbb{O}_p.$$

Categorification of cyclotomic ring

Since the representation theory of the small quantum group is defined over \mathbb{O}_p , it is important to categorify modules over this ring. Khovanov outlined a procedure to do this.

- ▶ Let A be a \mathbb{Z} -graded algebra over \mathbb{k} with a derivation ∂ of degree 2 such that $\partial^p = 0$.
- ▶ A is then called a p -DG algebra.

Categorification of cyclotomic ring

- ▶ Let N be a p -DG module over A . This means N has a derivation which is compatible with the derivation on A .
- ▶ Let $M \in H_p\text{-gmod}$ and $N \in A\text{-pdgmod}$.

Then $M \otimes N \in A\text{-pdgmod}$.

$a \in A$ acts on the second factor and ∂ acts by $\partial \otimes 1 + 1 \otimes \partial$.

This gives a functor

$$H_p\text{-gmod} \times A\text{-pdgmod} \rightarrow A\text{-pdgmod}.$$

Categorification of cyclotomic ring

Let $N', N'' \in A\text{-pdgmod}$.

$$f: N' \rightarrow N''$$

is said to be nullhomotopic if there exists a map $H: N' \rightarrow N''$ such that

$$f = \sum_{i=0}^{p-1} \partial^i H \partial^{p-1-i}.$$

Let $A\text{-pdgmod}$ be the homotopy category of $A\text{-pdgmod}$ where we quotient out by nullhomotopic maps.

Categorification of cyclotomic ring

Khovanov proved that there's a functor

$$H_p\text{-gmod} \times A\text{-pdgmod} \rightarrow A\text{-pdgmod}.$$

This endows $K_0(A\text{-pdgmod})$ with the structure of a module over $K_0(H_p\text{-gmod}) \cong \mathbb{O}_p$.

Categorification of cyclotomic ring

Let $f: N' \rightarrow N''$ be a morphism in A -pdgmod.

f is said to be a quasi-isomorphism if it restricts to an isomorphism in H_p -gmod.

Then we may form the derived category $D(A)$.

Khovanov proved that there's a functor

$$\underline{H_p\text{-gmod}} \times D(A) \rightarrow D(A)$$

which then endows $K_0(D(A))$ with the structure of an \mathbb{O}_p -module.

Quantum \mathfrak{sl}_2 at root of unity

- ▶ Let \dot{U} be \mathbb{O}_p -algebra generated by $1_n, 1_{n+2a}E^{(a)}1_n, 1_{n-2a}F^{(a)}1_n$ for $n \in \mathbb{Z}$, subject to standard relations.
- ▶ $u^+ \subset \dot{U}$ where \dot{u} is the small quantum group and $u^+ = \mathbb{O}_p[E]/(E^p)$.
- ▶ Let V_l be the Weyl module for \dot{U} . It has basis $\{v_0, \dots, v_l\}$.
- ▶ $V_r \otimes V_s$ has basis $\{v_b \diamond v_d \mid 0 \leq b \leq r, 0 \leq d \leq s\}$ given by

$$v_b \diamond v_d = \begin{cases} F^{(d)}E^{(a)}(v_r \otimes v_0) & \text{if } b \leq c \\ E^{(a)}F^{(d)}(v_r \otimes v_0) & \text{if } b \geq c \end{cases}$$

where $a + b = r$ and $c + d = s$.

p -DG nilHecke algebra

Let NH_n be the nilHecke algebra of rank n over \mathbb{k} .

Generators: y_1, \dots, y_n and $\psi_1, \dots, \psi_{n-1}$.

Relations:

- ▶ $y_i y_j = y_j y_i$
- ▶ $\psi_i^2 = 0$
- ▶ $\psi_i \psi_j = \psi_j \psi_i$ for $|i - j| > 1$
- ▶ $\psi_i \psi_j \psi_i = \psi_j \psi_i \psi_j$ for $|i - j| = 1$
- ▶ $y_i \psi_i - \psi_i y_{i+1} = 1 = \psi_i y_i - y_{i+1} \psi_i$.

NH_n has the structure of a p -DG algebra given by

$$\partial(y_i) = y_i^2 \quad \partial(\psi_i) = -y_i \psi_i - \psi_i y_{i+1}.$$

p -DG nilHecke algebra

Theorem (Khovanov-Qi)

There is an isomorphism $\bigoplus_{n \geq 0} K_0(\mathcal{D}(NH_n)) \cong u^+$.

Induction and restriction functors descend to multiplication and comultiplication in the Grothendieck group.

Theorem (Elias-Qi)

The Lauda category \mathcal{U} has a derivation ∂ so that $K_0(\mathcal{D}(\mathcal{U}, \partial)) \cong \dot{u}$.

Theorem (Elias-Qi)

The Khovanov-Lauda-Mackaay-Stosic category $\dot{\mathcal{U}}$ has a derivation ∂ so that $K_0(\mathcal{D}(\dot{\mathcal{U}}, \partial)) \cong \dot{U}$.

Categorification of $V_r \otimes V_s$

Let $NH_n^I = NH_n/(y_1^I)$ be the cyclotomic nilHecke algebra.

There are induction and restriction functors

$$\mathcal{F}: NH_n^I\text{-gmod} \rightarrow NH_{n+1}^I\text{-gmod} \quad \mathcal{E}: NH_n^I\text{-gmod} \rightarrow NH_{n-1}^I\text{-gmod}$$

giving rise to a categorical \mathfrak{sl}_2 (for generic q) action on

$$\bigoplus_{n=0}^I NH_n^I\text{-gmod}$$

(Kang-Kashiwara, Chuang-Rouquier, Webster)

Categorification of V_I

NH_n^I is a p -DG algebra and \mathcal{F} and \mathcal{E} are p -DG functors and there is an analogue of the previous result:

Theorem (Elias-Qi, Khovanov-Qi-S)

1. There's an action of (\mathcal{U}, ∂) on

$$\bigoplus_{n=0}^I NH_n^I\text{-pdgmod.}$$

2. When $I \leq p-1$,

$$\bigoplus_{n=0}^I \mathcal{D}(NH_n^I, \partial)$$

categorifies the irreducible Weyl module V_I .

Categorification of $V_r \otimes V_s$

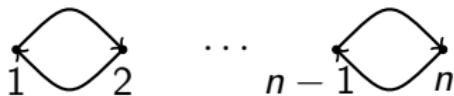
In order to categorify tensor products, we consider certain cyclotomic nilHecke modules introduced by Hu and Mathas.

- ▶ Let P_n^l be set of l -tuples whose entries are either 0 or 1 with a total of n ones.
- ▶ To $\lambda \in P_n^l$, with ones in positions a_1, \dots, a_n , there is monomial $y^\lambda = y_1^{l-a_1} \cdots y_n^{l-a_n}$.
- ▶ There's a p -DG NH_n^l -module $G(\lambda) = y^\lambda NH_n^l$.
- ▶ The p -DG quiver Schur algebra is

$$S_n(l) = \text{End}_{NH_n^l} \left(\bigoplus_{\lambda \in P_n^l} G(\lambda) \right).$$

Categorification of $V_r \otimes V_s$

Example: General l and $n = 1$. In this case $NH_1^l \cong \mathbb{k}[y]/(y^l)$ and $S_1(l)$ is isomorphic to $A_l^!$ where $A_l^!$ is the quotient of the path algebra of



by the relations

$$(1|2|1) = 0 \quad (i|i+1|i) = (i|i-1|i)$$

for $i = 2, \dots, l-1$.

$A_l^!$ has a p -DG structure determined by

$$\partial(i) = 0 \quad \partial(i+1|i) = 0 \quad \partial(i|i+1) = (i|i+1|i|i+1)$$

Categorification of $V_r \otimes V_s$

- ▶ Fix $r+s = l$, $a+b = r$, $c+d = s$.
- ▶ Let $P_n^{r,s} \subset P_n^l$ be tuples of form $\lambda = (0^a 1^b | 0^c 1^d)$.
- ▶ To such a λ , there is a certain idempotent $e_\lambda \in NH_n^l$.
- ▶ $e_\lambda G(\lambda)$ is a p -DG submodule of $G(\lambda)$.
- ▶ Then we have the p -DG algebra

$$S_n(r,s) = \text{End}_{NH_n^l} \left(\bigoplus_{\lambda \in P_n^{r,s}} e_\lambda G(\lambda) \right)$$

Categorification of $V_r \otimes V_s$

Theorem (Khovanov-Qi-S)

1. There's an action of $(\dot{\mathcal{U}}, \partial)$ on

$$S(r, s) := \bigoplus_{n=0}^{r+s} S_n(r, s)\text{-pdgmod}$$

2. The action of $\mathcal{D}(\dot{\mathcal{U}}, \partial) \cong \dot{\mathcal{U}}$ on $\mathcal{D}(S(r, s), \partial)$ categorifies $V_r \otimes V_s$.