Traces of tensor product categories

Michael Reeks
University of Ottawa

joint with Christopher Leonard (Virginia)

October 27, 2018

Michael Reeks Traces of tensor product categories



Trace decategorification

The trace (or zeroth Hochschild homology) of a C-linear additive
category C:

Tr(C) := ( Bxeob(c) Endc(X))/SPan{fg — gf},

where f and g run through all pairs of morphisms f : x — y and
gy — x with x, y € Ob(C).
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Trace decategorification

The trace (or zeroth Hochschild homology) of a C-linear additive
category C:

Tr(C) := ( Bxeob(c) Endc(X))/SPan{fg — gf},

where f and g run through all pairs of morphisms f : x — y and
gy — x with x, y € Ob(C).

If C is equipped with a tensor product, say C is monoidal.
C monoidal = Span{fg — gf} is ideal.
= Tr(C) as an algebra.
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Relationship between Ky and Tr

Grothendieck group Kp is often contained in trace, but rarely
isomorphic.
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Grothendieck group Kp is often contained in trace, but rarely
isomorphic.
Have a Chern character map

Ko(C) — Tr(C)
[A] — [14]

which is often injective.
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Relationship between Ky and Tr

Grothendieck group Kp is often contained in trace, but rarely
isomorphic.
Have a Chern character map

Ko(C) — Tr(C)
[A] — [14]

which is often injective.
Additional advantage: trace is invariant under taking Karoubi
envelope.
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Categorified quantum groups

[Khovanov-Lauda] and [Rouquier] independently constructed
categories U(g) such that

Ko(U(g)) = Uy (o)

where Uq(g) - idempotent form of quantum group associated to g.
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Categorified quantum groups

[Khovanov-Lauda] and [Rouquier] independently constructed
categories U(g) such that

Ko(U(g)) = Uy (o)

where Uq(g) - idempotent form of quantum group associated to g.

Morphisms given by KL diagrams:

modulo relations of the quiver Hecke algebra.
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Diagrammatic realization of trace

To see trace in diagrams: draw on an annulus.

- -
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Diagrammatic realization of trace

To see trace in diagrams: draw on an annulus.

- -

Semm=

Denote by brackets an element’s image in trace, e.g.
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Trace of categorified quantum groups

[Beliakov-Habiro-Lauda-Webster]: for g simply laced,

Tr(U*(g)) = U(alt]).

U(g[t]) - idempotent form of current algebra.

A A

(E,’®tr)1)\l—> {r , (Fj®ts)1)\'—> }S

i J
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Categorifying modules

Irreducible U, (g)—modules <+ Cyclotomic quotient
V() Ko u
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Categorifying modules

Irreducible U, (g)—modules <+ Cyclotomic quotient
V() Ko u

[BHLW] g simply laced:
Tr(UM) = W()) (local Weyl module for ¢4(g[t]).

Deformed cyclotomic quotient — W(\) (global Weyl module)
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Categorifying tensor products

Let A = (A1,...,A,) be a sequence of dominant weights.

[Webster] Constructed categories 7 () such that

Ko(T(Q) = V) = V(M) ©...© V(\)
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Categorifying tensor products

Let A = (A1,...,A,) be a sequence of dominant weights.

[Webster] Constructed categories 7 () such that

Ko(T(Q) = V) = V(M) ©...© V(\)

Can be used to prove nondegeneracy of categorified quantum
groups for symmetrizable root data.
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Stendhal diagrams

Morphisms in T are given by Stendhal diagrams.

Ko

i A kM

Red strands labeled by dominant weights.
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We prove:

For g simply laced, there is an algebra isomorphism

Tr(T*(A) — W) = W) ®...0 W(A,)
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We prove:

For g simply laced, there is an algebra isomorphism

Tr(T*(A) — W) = W) ®...0 W(A,)

The trace of a deformed version is isomorphic to W()).

Michael Reeks Traces of tensor product categories



Constructing the map

Lemma

The map W(A) — Tr(T*()))

un(- - w((twy,) @ wy,) @ -+ Q@ wy, ) —

>\n )\,,_1 )\2 )\1

is an algebra homomorphism (p is the isomorphism from BHLW).
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Surjectivity

We show that Tr(7*())) is spanned by Stendhal diagrams with no
red-black crossings:

i iA

These are clearly in the image of the map.

Michael Reeks Traces of tensor product categories



Injectivity

How can we tell that the trace is not smaller than expected?
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Injectivity

How can we tell that the trace is not smaller than expected?

[Webster] gets around this in the case of categorified quantum
groups by studying deformations of spectra of dots.
Upper semicontinuity under deformation:

dim at “special point” > dim at generic point
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Injectivity

How can we tell that the trace is not smaller than expected?

[Webster] gets around this in the case of categorified quantum
groups by studying deformations of spectra of dots.
Upper semicontinuity under deformation:

dim at “special point” > dim at generic point

Deform category so that special point is Tr(7*())), and generic
point has a known dimension.
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