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Denote by:

@ Sym = ring of symmetric functions

o f1 = adjoint of f € Sym w.r.t (ftu,v) = (u, fv).

The Bernstein operators are given by:

Bii= Y (~1)"hne,, a€Z
n—m=a

B;:= Y (-1)"eshm a€
m—n=a

If A= (A1, A2,..., Ap) with A\; > Ajyg then:

Theorem (Zelevinsky)

B)\l 500 B)\n(l) = S)
B ...Bi(s\) =1
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The Heisenberg algebra b has generators p(™ q(™ for m € N modulo the
relations

° [p(m)jp(n)] — [q(m), q(n)] -0
[+ [q(n)7p(m)] = Zk>0 p(mfk)q(nfk)

b C End(Sym) via p(") — h, and (" — hL.

Also, b has generators p("), g(1") for n € N such that

B,i= 3 (~1)mp™Mq™  aez
n—m=a
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@ whose action on &, . C[Ss]-mod is given by:

P ntl [ n ~ Ind?*t 2 C[Sy]-mod — C[Sy41]-mod

Q~n n+1 ~ Res] | : C[S;y1]-mod — C[S,]-mod
In particular if the rightmost region is O:

e Q(1)=0and

(] P)‘(]l) ~ 5)\.

Theorem (Khovanov)

f] — Ko(?'l)

pn) _y pin) QM s g
Py p17) QW) = g1
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Khovanov’s Heisenberg Category 7: a monoidal, idempotent complete
category whose object are senerated hv P Q and morphisms by:

X o N Y

subject to the relations:

pm Q) pa™ Q") CoT
g ? g g Categorical Fock Space (—J
n) 51" 1"

(m) Induction and
A e A VFock = @pen C[Sn] — mod

Restriction
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B,(1) = ...PC+AQ(") (1) — P(1+a)Q( ) — P@)(1) ~ PG)(1),
B.P(1) =... PCTIQUIP(1) - PIFIQP(1) — PIP(1)
~. P(2+a PQ )(]l) P(1+a PQ(]l) - P(a+1 (]l)

)

® P 2+a)Q(1) ® P(1+a)( ) @w

)PQ(12)(]1) . P(l(a)PQ( ) N P (a+1) (]1)
iJ?‘P(ZM)Q(ﬂ) ® P(1+a)(1) @ P 1)(1)
~P(@1) (1)

K
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How does B, act on 17 J

B,(1) = ...PCTaQ1) (1) - PI+aQ(1) — P@)(1) ~ P((1).

B.P(1) =... PR QIIP(1) — PUTIQP(1) — P@P(1)
~ ... PCPQU)(1) — PU+APQ(1) — PD(1)
o PeHIQ(1) @ Pl+(1) @ PEY(1)
.. P+IpQ) (1) — PI+apQ(1) — PE+D(1)
oPCrIQ(1) e PO+A(1) @ PEY(1)
~P@1)(1)

K

Given \1 > --- > \, then

By, ® -+ ® By, (1) = PM2n(1)

By, ® - ® By, Ptn(1) = 1
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Moreover the Bernstein operators satisfy the commutation relations:
BByt ByaBy=0 BB +B5aBI=0  BoiBii BB =0,

The categorical Bernstein operators satisfy categorical analogues up to
homotopy.

B ® B;[—-1] ;a<b
Bar1Bi i+ BiB: =da,b~> B @B =< b
a+12p+1 bPa a+1 b+1 {BE ® B[+1] ;a> b.
and distinguished triangles
Bix1®By 1 — 1= B;®B,

B;®B;— 1— Bay1®Bj .

The categorical Bernstein operators ARE categorical Bernstein operators. J
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Where did this story begin?

e%o(\ca\ Boson-Fermion Correp‘)nde
X
? oY

PR O
. S
h ~o
~
-
1

Heisenberg Category Categorical Fock Space | ;; Clifford Category??

Boson—FermionI torreSpondenCe

" Catqgorify” B

Heisenberg Algebra Symmetric Functions Clifford Algebra
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The Clifford algebra has generators W;, W7 for i € Z and commutation
relations {\U,', WJ} =0 and {\U*, \UJ*} =0 and {W,‘, Wj*} = 5/,]-

i
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Thank you for listening!
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...all the Heisenbergs......
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Example

Suppose i =0 and Q™ =0 for m > 3. Then Vg ® Wy =0
& Chp1 ® G, =20 for all n.

Let n =0 then Cy— H ﬁ “ A cl[H@,l
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Example

Apply isomorphism QPQ = PQQ ¢ Q then:

/ T J\j
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Example

G ® G

12

o — [l T [ — o

0

1



