

Quiver varieties and root multiplicities for symmetric Kac-Moody algebras

Peter Tingley

Loyola University Chicago

AMS section meeting, SF State university, Oct 27-28, 2018

Outline

1 Background

- What are Kac-Moody algebras and root multiplicities?
- What are Crystals?
- What are quiver varieties and how do they help?

2 Our method/Conjecture

3 Evidence

- Exact Data
- Heuristics

4 Proof

- ***Error, this section is empty***

What are Kac-Moody algebras?

What are Kac-Moody algebras?

- \mathfrak{sl}_3 :

What are Kac-Moody algebras?

- \mathfrak{sl}_3 :

$$\begin{pmatrix} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & * & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ * & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & * & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ * & 0 & 0 \end{pmatrix}$$

What are Kac-Moody algebras?

- \mathfrak{sl}_3 :

1

1

1

2

1

1

1

What are Kac-Moody algebras?

What are Kac-Moody algebras?

• $\widehat{\mathfrak{sl}}_2$:

$$\begin{matrix} & & \vdots & & \\ & & & & \vdots \\ & & & 1 & \\ & 1 & & & 1 \\ & & 1 & & \\ & & & 1 & \\ & 1 & & & 1 \\ & & 1 & & \\ & & & 3 & \\ & 1 & & & 1 \\ & & 1 & & \\ & 1 & & & 1 \\ & & & 1 & \\ & 1 & & & 1 \\ & & 1 & & \\ & & & 1 & \\ & & & & \vdots \\ & & & & \vdots \end{matrix}$$

What are Kac-Moody algebras?

- Hyperbolic with Cartan matrix $\begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$

1	2	9	9	23	16	23	9	9	2	1
	3		9	9		9		3		
		4		6		4			1	
1			4		4					
	1			3			1			
		1	2		2					
1				1			1			
		1			1					
			1			1				
				2						
		1				1				
			1				1			
1				1				1		
	1				2					
		1				1				
			1				1			
				2						
1					3					
	1					4				
		4					4			
3			9		9			3		
	2			9					2	
1				23						1

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is “good,” or maybe “combinatorial”

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is “good,” or maybe “combinatorial”
- We mostly consider the simplest hyperbolic case, and there there are combinatorial formulae (Kang-Melville, Carbone-Freyn-Lee, Kang-Lee-Lee), which use similar combinatorial objects to what we use...but there seem to be serious differences in the details and methods.

Explanation of $B(\infty)$

Explanation of $B(\infty)$

- Every representation is a quotient of $U^-(\mathfrak{g})$, the associative algebra generated by the negative root vectors.

Explanation of $B(\infty)$

- Every representation is a quotient of $U^-(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.

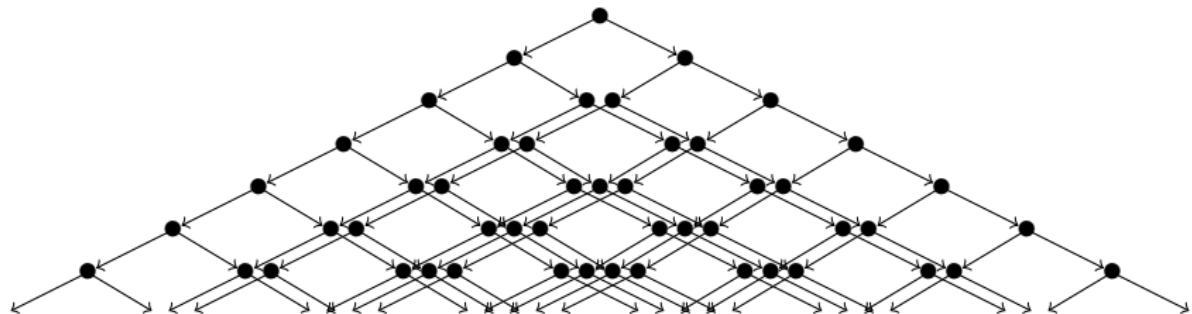
Explanation of $B(\infty)$

- Every representation is a quotient of $U^-(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.
- It has a subgraph for every highest weight integrable representation...but right now we don't really care about that.

Examples of infinity crystals

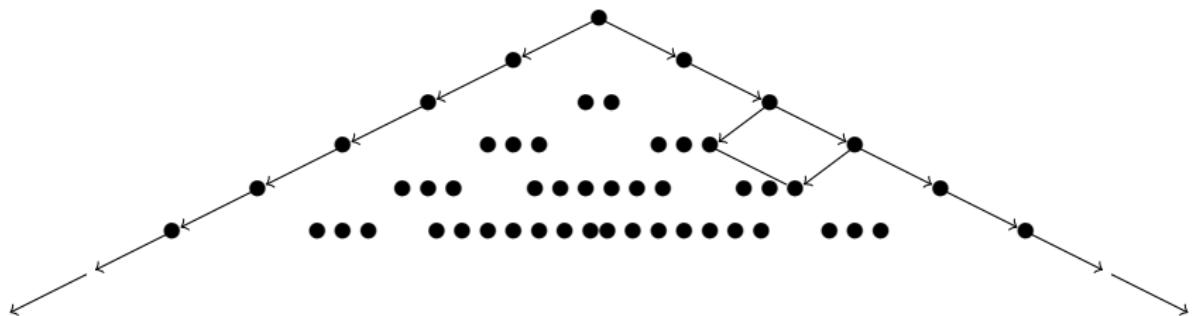
Examples of infinity crystals

- \mathfrak{sl}_3 :



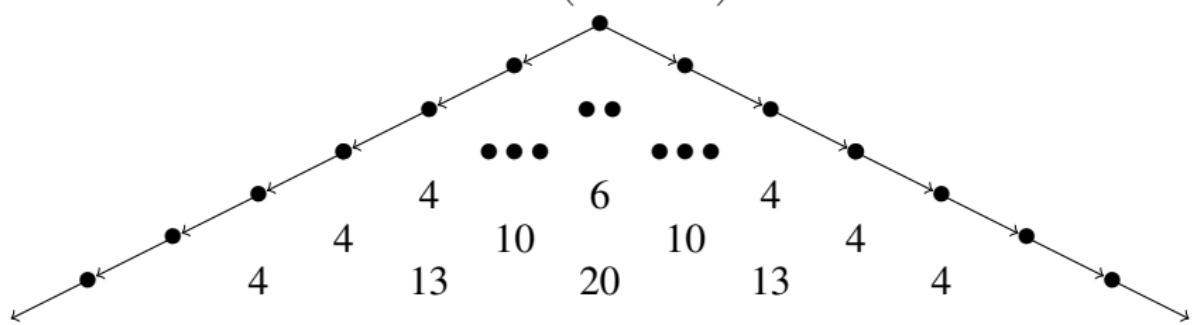
Examples of infinity crystals

- $\widehat{\mathfrak{sl}}_2$:



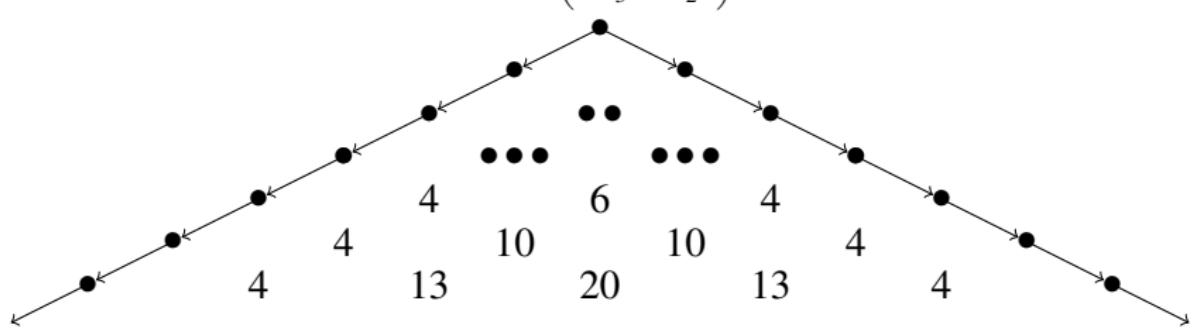
Examples of infinity crystals

- Hyperbolic with Cartan matrix $\begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$



Examples of infinity crystals

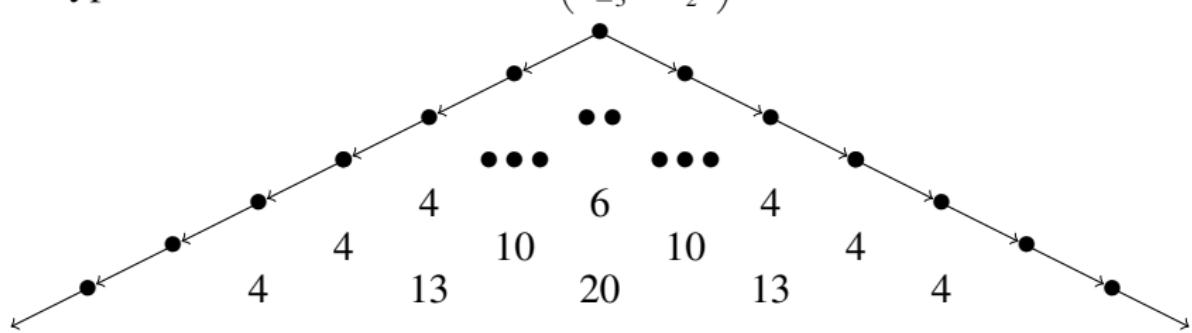
- Hyperbolic with Cartan matrix $\begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$



- We start by counting these numbers, because crystals can help.

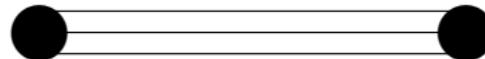
Examples of infinity crystals

- Hyperbolic with Cartan matrix $\begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$



- We start by counting these numbers, because crystals can help.
- These are given by Kostant partitions, so this is highly related.

How do quiver varieties help?



- Preprojective algebra is path algebra mod a generic quadratic relation.
- Elements of $B(\infty)$ correspond to irreducible components of the variety of nilpotent representations of this algebra.
- e.g. number of irreducible components of variety of representation of $\mathbb{C}^2 \oplus \mathbb{C}^3$ is 10.
- These irreducible components can be identified by the form of the Harder-Narasimhan filtration of their points (work with Kamnitzer Baumann).
- Note: only two irreps, Which we call **0** and **1**. We will identify representations (or families of representations) by a socle filtration.

Example

- Here are the irreducible components of the variety of irreducible representations on $\mathbb{C}^2 + \mathbb{C}^3$:

$$\begin{array}{ccccc}
 & \begin{array}{c} 1 \oplus 1 \\ \hline 0 \\ \hline 1 \end{array} & \begin{array}{c} 1 \\ \hline 0 \\ \hline 11 \\ \hline 0 \end{array} & \begin{array}{c} 0 \\ \hline 111 \\ \hline 0 \end{array} & \begin{array}{c} 11 \\ \hline 00 \\ \hline 1 \end{array} \\
 \begin{array}{c} 1 \oplus 1 \oplus 1 \\ \hline 0 \oplus 0 \end{array} & \begin{array}{c} \hline 0 \\ \hline 0 \end{array} \\
 & \begin{array}{c} 0 \\ \hline 11 \\ \hline 0 \\ \hline 1 \end{array} & \begin{array}{c} 1 \\ \hline 0 \\ \hline 1 \\ \hline 0 \end{array} & \begin{array}{c} 1 \\ \hline 00 \\ \hline 11 \\ \hline 111 \end{array} & \begin{array}{c} 0 \\ \hline 1 \\ \hline 0 \\ \hline 1 \end{array}
 \end{array}$$

- Correctly predicts that $B(\infty)$ has 10 elements in this degree.
- There are exactly two with a trivial filtration, which corresponds to the root multiplicity of $2\alpha_0 + 3\alpha_1$ being 2.

Our method

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a\alpha_0 + b\alpha_1$ with $\gcd(a, b) = 1$).

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a\alpha_0 + b\alpha_1$ with $\gcd(a, b) = 1$).
- Then the root multiplicity is the number of stable irreducible components

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a\alpha_0 + b\alpha_1$ with $\gcd(a, b) = 1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

0	
1	
0	
11	11010

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a\alpha_0 + b\alpha_1$ with $\gcd(a, b) = 1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

$$\begin{matrix} 0 \\ 1 \\ 0 \\ 11 \end{matrix} \qquad 11010$$

- Thus we need to count words subject to two conditions:
 - The result is a valid string data/socle filtration.
 - The corresponding component is stable.

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a\alpha_0 + b\alpha_1$ with $\gcd(a, b) = 1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

$$\begin{matrix} 0 \\ 1 \\ 0 \\ 11 \end{matrix} \qquad 11010$$

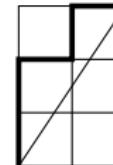
- Thus we need to count words subject to two conditions:
 - The result is a valid string data/socle filtration.
 - The corresponding component is stable.
- This idea was partly suggested to me by Alex Feingold.

Translating conditions to combinatorics

Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

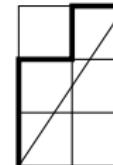
11010



Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

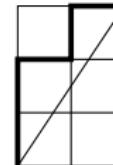
11010



Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

11010

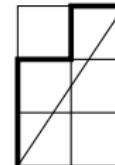


- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.

Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

11010

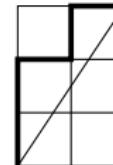


- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- Many more conditions...but they all seem to be weak:

Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

11010



- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- Many more conditions...but they all seem to be weak:
 - For string data $(a_1, a_2, \dots, a_{2k})$, for all $0 \leq x < y < k$,

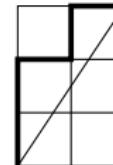
$$\frac{a_1 + \dots + a_{2x-1} + (a_{2x+2} + \dots + a_{2y}) - a_{2x+3} - \dots - a_{2y+1}}{a_2 + \dots + a_{2y}}$$

is at most the slope of the Dyck path. This rules out e.g. $1^3 0^2 1^5 0^5$ because get submodule 10^2 .

Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

11010



- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- Many more conditions...but they all seem to be weak:

- For string data $(a_1, a_2, \dots, a_{2k})$, for all $0 \leq x < y < k$,

$$\frac{a_1 + \dots + a_{2x-1} + (a_{2x+2} + \dots + a_{2y}) - a_{2x+3} - \dots - a_{2y+1}}{a_2 + \dots + a_{2y}}$$

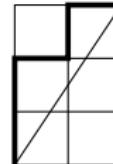
is at most the slope of the Dyck path. This rules out e.g. $1^3 0^2 1^5 0^5$ because get submodule 10^2 .

- A few more need to be ruled out, e.g. $1^{10} 0^3 1^5 0^{13}$.

Translating conditions to combinatorics

- The path must be a (rational) Dyck path.

11010



- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- Many more conditions...but they all seem to be weak:

- For string data $(a_1, a_2, \dots, a_{2k})$, for all $0 \leq x < y < k$,

$$\frac{a_1 + \dots + a_{2x-1} + (a_{2x+2} + \dots + a_{2y}) - a_{2x+3} - \dots - a_{2y+1}}{a_2 + \dots + a_{2y}}$$

is at most the slope of the Dyck path. This rules out e.g. $1^3 0^2 1^5 0^5$ because get submodule 10^2 .

- A few more need to be ruled out, e.g. $1^{10} 0^3 1^5 0^{13}$.
- Related to good Lyndon words...but not the same, as we use string data, not a "lex-minimal" condition. Mixes up the difficulty of the questions "is there an irrep for this?" and "would such an irrep be stable/cuspidal?"

Conjectures

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m\alpha_0 + n\alpha_1$ provided $\gcd(m, n) = 1$ and $m\alpha_0 + n\alpha_1$ is far inside the imaginary cone.

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m\alpha_0 + n\alpha_1$ provided $\gcd(m, n) = 1$ and $m\alpha_0 + n\alpha_1$ is far inside the imaginary cone.

- I hope/believe this means the number of rational Dyck paths satisfying the ratio condition for e.g. $(n + 1)\alpha_0 + n\alpha_1$ is \mathcal{O} of the correct answer. Or at least the error grows extremely slowly.
- Something similar should hold going out along any line.
- Something similar should be true in other types.

Data

Calculated in SAGE with my student Colin Williams

Root	Estimate using only ratio	Estimate with next condition	Actual multiplicity
$15\alpha_0 + 14\alpha_1$	278335	271860	271860
$16\alpha_0 + 15\alpha_1$	837218	815215	815214
$17\alpha_0 + 16\alpha_1$	2532723	2458686	2458684

Our estimates are generally more accurate for roots $m\alpha_0 + n\alpha_1$ with $m > n$.
 Here is the one word we over-counted for $16\alpha_0 + 15\alpha_1$:

$$1^{10}0^31^50^{13}.$$

It should be ruled out because the quotient 1^50^{13} generates $10^21^50^{13}$, which has the submodule 10^2 .

Monte-Carlo data

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.
- Here is a typical result for the root $51\alpha_0 + 50\alpha_1$, where the correct multiplicity is $\simeq 2.039 \times 10^{23}$ (which took about 3 hours on a 2012 laptop):

Monte-Carlo data

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.
- Here is a typical result for the root $51\alpha_0 + 50\alpha_1$, where the correct multiplicity is $\simeq 2.039 \times 10^{23}$ (which took about 3 hours on a 2012 laptop):

Monte-Carlo data

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.
- Here is a typical result for the root $51\alpha_0 + 50\alpha_1$, where the correct multiplicity is $\simeq 2.039 \times 10^{23}$ (which took about 3 hours on a 2012 laptop):

Paths sampled	Passed ratio condition	Estimate using just ratio	Also passed next condition	Estimate using both
10^8	11451	2.265×10^{23}	10473	2.072×10^{23}

Heuristics

- For large k , the expected number of returns a random rational Dyck path makes to distance r from the diagonal stays around $4r + 4$. Does not grow!
- Stability fails when consecutive edge lengths a_k, a_{k+1} generate a problematic submodule, but this only has “local” effect. e.g. $1^5 0^{13}$ generates a quotient of

$$\dots 0^{34} 1^{13} 0^5 1^2 0^1 1^1 0^2 1^5 0^{13}.$$

- You need to both be close to the boundary and close to the ratio at once....unlikely.
- I can't prove it is unlikely enough though. Also, maybe isn't quite right:

$$1^5 0^2 1^3 0^2 1^5 0^2 1^5 0^2 1^5 0^3 1^5 0^{13} 1^9 0^{17}$$

$$1^5 0^2 1^3 0^2 1^5 0^2 1^5 0^2 1^5 0^2 1^5$$

$$1^5 0^2 1^1 0^2 1^1 0^2 1^1 0^2 1^1 0^2$$

I wish I could end by saying there is a proof...sorry!

I wish I could end by saying there is a proof...sorry!

Thanks for listening!!!!!!