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Background What are Kac-Moody algebras and root multiplicities?

What are Kac-Moody algebras?
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Background What are Kac-Moody algebras and root multiplicities?

What are Kac-Moody algebras?

The task is to get a good formula for these numbers.

Formulae exist (Berman-Moody and Peterson), based on Weyl
denominator identity. So, the point is “good," or maybe “combinatorial"

We mostly consider the simplest hyperbolic case, and there there are
combinatorial formulae (Kang-Melville, Carbone-Freyn-Lee,
Kang-Lee-Lee), which use similar combinatorial objects to what we
use...but there seem to be serious differences in the details and methods.
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Background What are Crystals?

Explanation of B(∞)

Every representation is a quotient of U−(g), the associative algebra
generated by the negative root vectors.

You can make a colored graph, where nodes are basis vectors, and
arrows approximate actions of Chevalley generators.

It has a subgraph for every highest weight integrable representation...but
right now we don’t really care about that.
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Background What are Crystals?

Examples of infinity crystals

sl3:
•

••
• •• •

• •• •••
• •• ••••••

• •• •••••• •••
• •• •••••• •••••••

•
••

• •• •
• ••• ••• •

• ••• •••••• ••• •
• ••• •••• ••• ••••••• ••• •

•
••

• •• •
• ••• ••• ••

•
•

•

•
•

•
•

4 6 4
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4 13 20 13 4

We start by counting these numbers, because crystals can help.

These are given by Kostant partitions, so this is highly related.
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Background What are quiver varieties and how do they help?

How do quiver varieties help?

~ ~
Preprojective algebra is path algebra mod a generic quadratic relation.

Elements of B(∞) correspond to irreducible components of the variety
of nilpotent representations of this algebra.

e.g. number of irreducible components of variety of representation of
C2 ⊕ C3 is 10.

These irreducible components can be identified by the form of the
Harder-Narasimhan filtration of their points (work with Kamnitzer
Baumann).

Note: only two irreps, Which we call 0 and 1. We will identify
representations (or families of representations) by a socle filtration.
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Background What are quiver varieties and how do they help?

Example

Here are the irreducible components of the variety of irreducible
representations on C2 + C3:

1⊕ 1⊕ 1

0⊕ 0

1⊕ 1

0
1

0

1

0
11

0

0
111

0

11

00
1

0
11

0
1

1

0
1
0
1

1

00
11

00
111

0
1
0
11

Correctly predicts that B(∞) has 10 elements in this degree.
There are exactly two with a trivial filtration, which corresponds to the
root multiplicity of 2α0 + 3α1 being 2.
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Our method/Conjecture

Our method

We can only deal with roots β such that β is not a multiple of a smaller
root (e.g. aα0 + bα1 with gcd(a, b) = 1).

Then the root multiplicity is the number of stable irreducible components

Stable components are labeled by string data/socle filtrations.

0
1
0
11

11010

Thus we need to count words subject to two conditions:

The result is a valid string data/socle filtration.
The corresponding component is stable.

This idea was partly suggested to me by Alex Feingold.
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Our method/Conjecture

Translating conditions to combinatorics

The path must be a (rational) Dyck path.

11010

If there are ak i’s followed by ak+1 j’s, then ak+1
ak

<
√

5+3
2 .

Many more conditions...but they all seem to be weak:
For string data (a1, a2, . . . , a2k), for all 0 ≤ x < y < k,

a1 + · · ·+ a2x−1 + (a2x+2 + · · ·+ a2y)− a2x+3 − · · · − a2y+1

a2 + · · ·+ a2y

is at most the slope of the Dyck path. This rules out e.g. 13021505 because
get submodle 102.
A few more need to be ruled out, e.g. 1100315013.

Related to good Lyndon words...but not the same, as we use string data,
not a “lex-minimal" condition. Mixes up the difficulty of the questions
“is there an irrep for this?" and “would such an irrep be stable/cuspidal?"
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Many more conditions...but they all seem to be weak:
For string data (a1, a2, . . . , a2k), for all 0 ≤ x < y < k,

a1 + · · ·+ a2x−1 + (a2x+2 + · · ·+ a2y)− a2x+3 − · · · − a2y+1

a2 + · · ·+ a2y

is at most the slope of the Dyck path. This rules out e.g. 13021505 because
get submodle 102.
A few more need to be ruled out, e.g. 1100315013.

Related to good Lyndon words...but not the same, as we use string data,
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Our method/Conjecture

Conjectures

Conjecture
For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio
condition is a good estimate of the root multiplicity of mα0 + nα1 provided
gcd(m, n) = 1 and mα0 + nα1 is far inside the imaginary cone.

I hope/believe this means the number of rational Dyck paths satisfying
the ratio condition for e.g. (n + 1)α0 + nα1 is O of the correct answer.
Or at least the error grows extremely slowly.

Something similar should hold going out along any line.

Something similar should be true in other types.
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Evidence Exact Data

Data

Calculated in SAGE with my student Colin Williams

Root
Estimate using

only ratio
Estimate with
next condition

Actual
multiplicity

15α0 + 14α1 278335 271860 271860
16α0 + 15α1 837218 815215 815214
17α0 + 16α1 2532723 2458686 2458684

Our estimates are generally more accurate for roots mα0 + nα1 with m > n.
Here is the one word we over-counted for 16α0 + 15α1:

1100315013.

It should be ruled out because the quatient 15013 generates 10215013, which
has the submodule 102.
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Evidence Exact Data

Monte-Carlo data

We also estimated large root multiplicities by sampling Dyck paths, and
estimating the proportion that satisfy each condition.

Here is a typical result for the root 51α0 + 50α1, where the correct
multiplicity is ' 2.039× 1023 (which took about 3 hours on a 2012
laptop):

Paths
sampled

Passed
ratio

condition

Estimate
using just

ratio

Also
passed next

condition

Estimate
using
both

108 11451 2.265× 1023 10473 2.072× 1023
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Evidence Heuristics

Heuristics

For large k, the expected number of returns a random rational Dyck path
makes to distance r from the diagonal stays around 4r + 4. Does not
grow!
Stability fails when consecutive edge lengths ak, ak+1 generate a
problematic submodule, but this only has “local" effect. e.g. 15013

generates a quotient of

· · · 034113051201110215013.

You need to both be close to the boundary and close to the ratio at
once....unlikely.
I can’t prove it is unlikely enough though. Also, maybe isn’t quite right:

150213021502150215031501319017

1502130215021502150215

15021102110211021102
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Proof ***Error, this section is empty***

I wish I could end by saying there is a proof...sorry!

Thanks for listening!!!!!!!!
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