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Coxeter groups

Coxeter groups

Definition

A Coxeter system is a pair (W, S), in which W is a group given by
the presentation
(S| (sig)™ =1),

and the mj; € Z U {oo} satisfy mj; = 1 and mj; = mj;.
(If mj; = oo, we omit the corresponding relation.)

The group W above is known as a Coxeter group. Well known
examples of Coxeter groups include the finite symmetric and
dihedral groups. It turns out that the generators s; have order 2
and that mj; is the order of the product s;s;.
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Coxeter groups Lusztig's a-function Main result

A good way to encode the information given in the presentation of
a Coxeter group is by means of a graph.

Definition
Let (W,S) be a Coxeter system. The Coxeter graph, I, of (W, S)
is a graph whose vertices are indexed by S. Two vertices s; and s;

are connected by an edge if m; > 2. If we have m;; > 3, then we
label the edge by the integer m;; = mj;.

Theorem (Classification of finite Coxeter groups)

A Coxeter group is finite if and only if the connected components
of its Coxeter graph are finite in number and appear in the list in
the next figure.
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Coxeter groups

Reduced expressions

Every element of a Coxeter group W can be expressed as a word in
the generators S.

For a given element w € W, the length of w, ¢(w), is defined to
be the minimal integer k for which w has an expression as a word
of length k in the alphabet S.

Minimal words of this type are called reduced expressions for w.
We call an element w € W rigid if it has a unique reduced
expression.
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Coxeter groups

Provided that i # j, the defining relation (s;s;)™i = 1 of a Coxeter
group may be written in the homogeneous form

sl-sjsl-... :5j5i5j"'-

—_—

mj; factors mj; factors
A relation of this form is called a braid relation. We call the braid
relation short if m;; = 2; in other words, if it is of the form

sisj = sjs; where i and j correspond to nonadjacent nodes in the
Coxeter graph.

Theorem (Matsumoto's Theorem)

Let W be a Coxeter group and let w € W. Any reduced
expression for w may be transformed into any other via a finite
sequence of braid relations.
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Coxeter groups

Fully commutative elements

Two words in the Coxeter generators S are said to be commutation
equivalent if one can pass from one to the other using a (finite)
sequence of short braid relations.

Definition

Let W be a Coxeter group and let w € W. We call w fully
commutative if all reduced expressions for w are commutation
equivalent to each other.

The set of fully commutative elements of W is denoted by W.,.

Rigid elements, such as x = s1sps3, are vacuously fully
commutative.

It turns out that the number of fully commutative elements in the
symmetric group S, is counted by the Catalan numbers.
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A heap over a graph can be thought of as a certain partially
ordered set whose elements are labelled by the vertices of the

graph.

Definition
A heap is a function € : E — I, where E is a poset and [ is a
graph, satisfying the following two conditions.

1. The inverse images of each vertex £~%(a) and each edge
e~ 1({a, b}) are chains in E (called vertex chains and edge
chains, respectively).

2. The partial order < on E is the smallest partial order in which
these are chains.
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The heaps over a fixed I' can be made into a category. Here, the
isomorphisms are what you would expect them to be:
isomorphisms of partially ordered sets that respect the labellings.

For our purposes today, the sets E and I will always be finite. In
this case, it is convenient to depict a heap (up to isomorphism) by
labelling the vertices of the Hasse diagram of E with the elements
of I'.

The next diagram shows a heap E with six elements, over the
Coxeter graph of type By.
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Words from heaps

Let (W, S) be a Coxeter system. Any finite heap E over the
Coxeter graph of (W, S) gives rise to an element of $* (i.e., a
word in S).

To produce a word from E, first choose a refinement of the partial
order < on E to a total order, and write

E:{el,ez,...,ek}

so that e; < e < -+ < e, according to this total order. The word
of E is then the corresponding sequence of labels,

e(er)e(e) - - e(ex)-
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It can be shown that choosing a different refinement of < will
result in a word that is commutation equivalent to the original
word. This means that the two words will be expressions for the
same element of W.

More generally, this map from heaps to words can be shown to
induce a bijection between isomorphism classes of heaps and
commutation classes of words.

Using this, we can talk about the heap of a reduced expression,
and if w is fully commutative, we can talk about the heap of w,
meaning the heap of a(ny) reduced expression of w.
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Heaps

The heap of the fully commutative element
abacbd = abcabd = abcadb = abacdb
in the Coxeter group W(By).
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Lusztig's a-function

For any Coxeter system (W, S), there is a corresponding Hecke
algebra, H(W). This is an associative algebra over Z[q, ¢~!] with
basis {T,, : w € W}.

Here, g is an indeterminate, and the ring structure of H(W) is
determined by the conditions

T.T. — 7_sw if K(SW) > E(W);
T qTsw+(qg—1)T, otherwise.
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Lusztig's a-function

Using this one weird trick [1], it is possible to replace the basis
{Tw : w € W} by another basis with more interesting properties:
the Kazhdan-Lusztig basis {C|, : w € W}. This involves enlarging
the ground ring to contain a square root, v, of q.

The structure constants gy, , of the Kazhdan—Lusztig basis, which
are defined by
C>/<C},/ = Z gx,y,zcéa
zeWw
are Laurent polynomials in Z[v, v~!] (proved to lie in N[v, v~!] by
Elias and Williamson).
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Lusztig's a-function

Using this one weird trick [1], it is possible to replace the basis
{Tw : w € W} by another basis with more interesting properties:
the Kazhdan-Lusztig basis {C|, : w € W}. This involves enlarging
the ground ring to contain a square root, v, of q.

The structure constants gy, , of the Kazhdan—Lusztig basis, which
are defined by

Nall !
Cny = E : ng}’:ZCz’
zeWw

are Laurent polynomials in Z[v, v~!] (proved to lie in N[v, v~!] by
Elias and Williamson).

[1] The “one weird trick” corresponds to Stanley's notion of
P-kernels, or to Du's notion of IC bases.
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Lusztig's a-function

For any Coxeter group W, Lusztig defined a function a: W — Z,
where a(w) is defined to be the maximum possible degree of the
Laurent polynomial g, w as x and y range over W.

The a-function is useful in representation theory because it is
constant on the two-sided Kazhdan—Lusztig cells, which form a
partition of W. This makes the a-function relevant to the study of
the asymptotic Hecke algebra J.

In general, it is difficult to compute the values of a(w) in a
non-recursive way.
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Lusztig's a-function Main result

Fully commutative elements are relevant to the study of the
a-function because of the following result.

Theorem

Let W be a Coxeter group and let w € W.
1. The element w is the identity if and only if a(w) = 0.
2. The element w is rigid if and only if a(w) < 1.
3. If a(w) < 2, then w is fully commutative.

Definition

Let k be a natural number. We say that a Coxeter group W is
a(k)-finite if W has only finitely many elements with a-value equal
to k.
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Lusztig's a-function

It follows from the previous theorem that every Coxeter group is
a(0)-finite, and that W is a(1)-finite if and only if W has finitely
many rigid elements. It is not too difficult to determine when this
latter situation occurs.

Theorem

Let (W,S) be a Coxeter system with Coxeter graph ', and assume
that T is connected. Then W is a(1)-finite if and only if both

1. T contains no circuits, and

2. I has at most one edge with a label strictly bigger than 3.

(We will often assume for simplicity that the Coxeter graph of W
is finite and connected. General properties can typically be easily
understood in terms of the answer in the connected case.)
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Lusztig's a-function

In this context, a natural question is to try to classify the
a(2)-finite Coxeter groups. This is much harder, but still
combinatorially tractable because elements of a-value 2 are fully
commutative, and fully commutative elements can be understood
in terms of their heaps.

More specifically, the a-value of a fully commutative element may
sometimes be computed in terms of the antichains of the
corresponding heap. Recall that an antichain in a partially ordered
set E is a subset F of E such that no two distinct elements of F
are comparable.
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Lusztig's a-function

Conjecture

Let W be a Coxeter group, let w € W, and let n(w) be the size
of the longest antichain in the heap of w. Then a(w) is equal to

n(w).

It is not hard to prove that n(w) < a(w).

Equality is known to hold in certain classes of groups: J.-Y. Shi
proved that equality holds if W is a finite or affine Weyl group,
and | proved that equality holds if W is a “star reducible” Coxeter

group.
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Main result

Theorem ([G—Xu])

Let (W,S) be a Coxeter system with connected Coxeter graph I
Then W is a(2)-finite if and only if either

1. T is the complete graph, with any labels > 3, or

2. I belongs to one of the six infinite families in the diagram on
the following page.

Notes

1. In each case, n is the number of vertices in the graph.

2. The dihedral types, l(m), are included in the complete graph
case.

3. The graph E,  is a tree with branches of lengths 1, g and r.

R.M. Green CU Boulder

The classification of a(2)-finite Coxeter groups



Main result

An o—o0—0 ------ o——0 (n > 1)
B, oio—op —————— o—o0 (n > 2)
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Main result

Remarks on the proof

In most cases, it is relatively straightforward to prove that the
diagrams listed correspond to a(2)-finite Coxeter groups. However,
the proof that C,_1 is a(2)-finite for n > 5 seems to be a subtle
property. It can be deduced either from Ernst’s classification of the
fully commutative elements, or from Shi's classification of the
Kazhdan—Lusztig cells.

The bulk of the proof involves considering minimal
counterexamples to a(2)-finiteness and proving that they are
a(2)-infinite. In many cases, the aforementioned conjecture is
known to hold, so it suffices to construct an infinite family of fully
commutative elements whose heaps all have maximal antichains of
size 2.
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Main result

The following three cases cause particular difficulty, because (in
most cases) they are neither affine Weyl groups nor star reducible
Coxeter groups.
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Main result

This means that in these cases, it is not straightforward to
calculate the a-value of a fully commutative element from the
structure of its heap.

Our approach in this case is again to construct an infinite family of
fully commutative elements whose heaps have maximal antichains
of size 2, and then to use Lusztig's technique of star operations to
verify that all the elements in the family also have a-value 2, thus
proving that the associated groups are a(2)-infinite.

R.M. Green CU Boulder

The classification of a(2)-finite Coxeter groups



Main result

m Lusztig's a-function is an algebraically defined, but somewhat
mysterious, integer-valued function on a Coxeter group,
defined in terms of the Kazhdan—Lusztig basis.

m An element w of a Coxeter group has a unique reduced
expression if and only if a(w) < 1. A Coxeter group with a
finite connected graph has finitely many elements with a-value
1 if and only if the graph has no circuits and has at most one
edge with a label strictly bigger than 3.

m An element w of a Coxeter group satisfying a(w) = 2 must be
fully commutative. A Coxeter group with a finite connected
graph has finitely many elements with a-value 2 if and only if
either the graph is the complete graph, or the graph belongs
to one of six infinite families: A,, B, C,—1, Eq.r, Fy or Hp.
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