

Quasisymmetric Power Sums and Plethysm

Sarah Mason

Joint with Cristina Ballantine, Zajj Daugherty, Angela Hicks,
and Elizabeth Niese

AMS Fall Western Sectional Meeting
San Francisco State University
October 27, 2018

A symmetric function $f(x_1, x_2, \dots, x_n)$ in n commuting variables is a function which remains the same when the indices of the variables are permuted.

- Sym is the ring of all symmetric functions.
- Sym_n is the ring of symmetric functions in n variables.

A few different bases for Sym

- Monomial symmetric functions

$$m_{2,1}(x_1, x_2, x_3) = x_1^2 x_3 + x_1^2 x_2 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2$$

- Complete homogeneous symmetric functions

$$h_{2,1}(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_1 x_3 + x_2 x_3)(x_1 + x_2 + x_3)$$

- Elementary symmetric functions

$$e_{2,1}(x_1, x_2, x_3) = (x_1 x_2 + x_1 x_3 + x_2 x_3)(x_1 + x_2 + x_3)$$

- Power sum symmetric functions

$$p_{2,1}(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2)(x_1 + x_2 + x_3)$$

- Schur functions: $s_\lambda(x_1, \dots, x_n) = \sum_{T \in SSYT(\lambda)} x^T$, where $SSYT(\lambda)$ is the set of all SSYT of shape λ .

$$s_{2,1}(x_1, x_2, x_3) =$$

<table border="1"><tr><td>2</td></tr><tr><td>1</td><td>1</td></tr></table>	2	1	1	<table border="1"><tr><td>3</td></tr><tr><td>1</td><td>1</td></tr></table>	3	1	1	<table border="1"><tr><td>3</td></tr><tr><td>1</td><td>2</td></tr></table>	3	1	2	<table border="1"><tr><td>2</td></tr><tr><td>1</td><td>3</td></tr></table>	2	1	3	<table border="1"><tr><td>2</td></tr><tr><td>1</td><td>2</td></tr></table>	2	1	2	<table border="1"><tr><td>3</td></tr><tr><td>1</td><td>3</td></tr></table>	3	1	3	<table border="1"><tr><td>3</td></tr><tr><td>2</td><td>2</td></tr></table>	3	2	2	<table border="1"><tr><td>3</td></tr><tr><td>2</td><td>3</td></tr></table>	3	2	3
2																															
1	1																														
3																															
1	1																														
3																															
1	2																														
2																															
1	3																														
2																															
1	2																														
3																															
1	3																														
3																															
2	2																														
3																															
2	3																														

$$x_1^2 x_2 + x_1^2 x_3 + 2x_1 x_2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2^3 x_3 + x_2 x_3^2$$

- Schur functions correspond to **characters** of **irr reps** of GL_n .
- Schur functions describe the cohomology of the **Grassmannian**.
- Schur functions generalize to **Macdonald polynomials** ($P_\lambda(X; q, t)$).

There exists a **scalar product** $\langle , \rangle : \text{Sym} \otimes \text{Sym} \rightarrow \mathbb{C}$ defined by

$$\langle h_\lambda, m_\mu \rangle = \delta_{\lambda, \mu},$$

so that the homogeneous and monomial functions are dual. Under this pairing, we have

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda \mu},$$

where $z_\lambda = \prod_k a_k! k^{a_k}$, $a_k = \#\{\text{pts of length } k\}$ Ex: $z_{(3,3)} = 2! 3^2$.

Generating functions:

$$H(t) = \sum_{k \geq 0} h_k t^k = \prod_{i \geq 1} (1 - x_i t)^{-1}$$

$$E(t) = \sum_{k \geq 0} e_k t^k = \prod_{i \geq 1} (1 + x_i t)$$

Note $H(t) = 1/E(-t)$.

$$P(t) = \sum_{k \geq 0} p_k t^k = \frac{d}{dt} \ln(H(t)) = \frac{d}{dt} \ln(1/E(-t))$$

The ring of **noncommutative symmetric functions** NSym is the \mathbb{C} -algebra generated freely by $\mathbf{e}_1, \mathbf{e}_2, \dots$.

Analogous bases indexed by compositions α .

- Noncommutative elementary: $\mathbf{e}_\alpha = \mathbf{e}_{\alpha_1} \cdots \mathbf{e}_{\alpha_\ell}$. $\mathcal{A}b(\mathbf{e}_\alpha) = e_{\tilde{\alpha}}$
- Noncom. homog.: $\mathbf{h}_\alpha = \mathbf{h}_{\alpha_1} \cdots \mathbf{h}_{\alpha_\ell}$, where \mathbf{h}_i is defined by...

$$\text{if } \mathbf{E}(t) = \sum_{k \geq 0} \mathbf{e}_k t^k \quad \text{and} \quad \mathbf{H}(t) = \sum_{k \geq 0} \mathbf{h}_k t^k,$$

then $\mathbf{H}(t) = 1/\mathbf{E}(-t)$. (Recall: $H(t) = 1/E(-t)$ in Sym).

$$\mathcal{A}b(\mathbf{h}_\alpha) = h_{\tilde{\alpha}}$$

- ★ Noncommutative power sums: two choices, ψ and ϕ !

In Sym :

$$\text{Type 1: } P(t) = \frac{d}{dt} \ln(H(t)) \quad \frac{d}{dt} \mathbf{H}(t) = \mathbf{H}(t) \mathbf{\Psi}(t)$$

$$\text{Type 2: } H(t) = \exp \left(\int P(t) dt \right) \quad \mathbf{H}(t) = \exp \left(\int \mathbf{\Phi}(t) dt \right)$$

Not the same! (No unique notion of log derivative for power series with noncommutative coefficients.) But

$$\mathcal{A}b(\psi_\alpha) = p_{\tilde{\alpha}} = \mathcal{A}b(\phi_\alpha)$$

A quasisymmetric function $f(x_1, x_2, \dots, x_n)$ in n commuting variables is a function such that the coefficient of $x_{i_1}^{a_1} x_{i_2}^{a_2} \cdots x_{i_k}^{a_k}$ (where $i_1 < i_2 < \cdots < i_k$) in f is equal to coefficient of $x_{j_1}^{a_1} x_{j_2}^{a_2} \cdots x_{j_k}^{a_k}$ (where $j_1 < j_2 < \cdots < j_k$) in f .

- QSym is the ring of all quasisymmetric functions.
- QSym_n is the ring of quasisymmetric functions in n variables.

A few different bases for QSym

- Monomial quasisymmetric functions

$$M_{2,1}(x_1, x_2, x_3) = x_1^2 x_3 + x_1^2 x_2 + x_2^2 x_3$$

- Gessel's fundamental quasisymmetric functions

$$F_{2,1}(x_1, x_2, x_3) = x_1^2 x_3 + x_1^2 x_2 + x_2^2 x_3 + x_1 x_2 x_3$$

A filling of the Young composition diagram of shape α with numbers $1, \dots, n$ is a semistandard Young composition tableau iff

- ① The leftmost column is increasing from bottom to top and
- ② the rows are increasing from left to right and
- ③ (YCT triple rule) for every subarray as shown, if $a \geq b$ then $a > c$, where if c is empty, $c = \infty$.

b	c
-----	-----

a

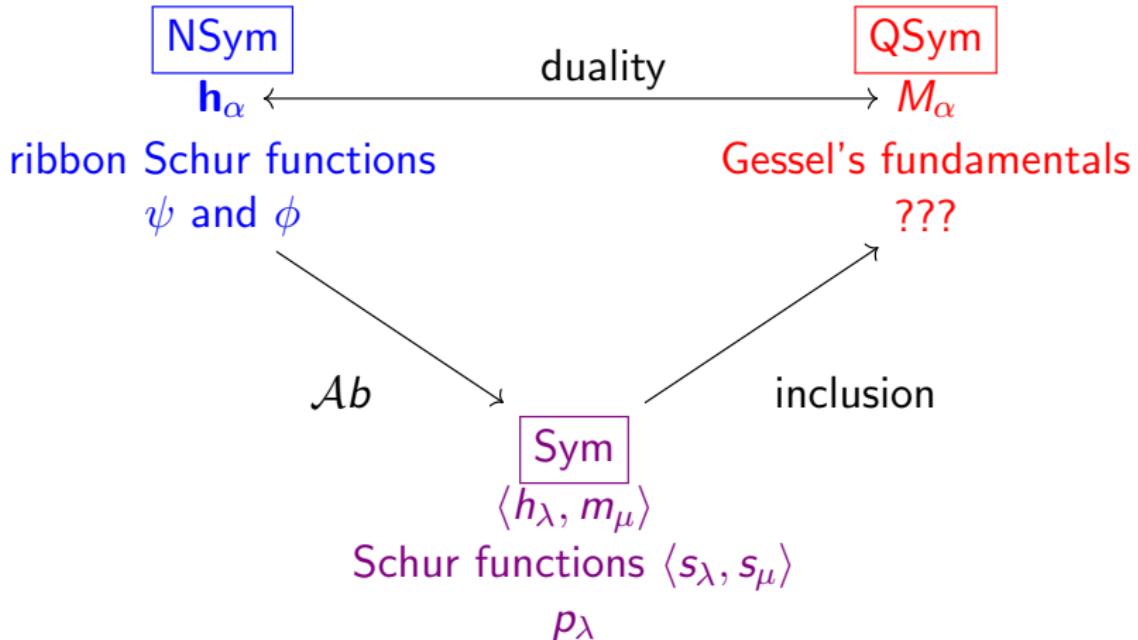
$$YQS_{2,1}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2 x_3 + x_2^2 x_3$$

<table border="1"> <tr> <td>2</td> <td></td> </tr> <tr> <td>1</td> <td>1</td> </tr> </table>	2		1	1	<table border="1"> <tr> <td>3</td> <td></td> </tr> <tr> <td>1</td> <td>1</td> </tr> </table>	3		1	1	<table border="1"> <tr> <td>3</td> <td></td> </tr> <tr> <td>1</td> <td>2</td> </tr> </table>	3		1	2	<table border="1"> <tr> <td>3</td> <td></td> </tr> <tr> <td>2</td> <td>2</td> </tr> </table>	3		2	2
2																			
1	1																		
3																			
1	1																		
3																			
1	2																		
3																			
2	2																		

- $s_\lambda = \sum_{\tilde{\alpha}=\lambda} YQS_\alpha$
- If f is symmetric and Young quasisymmetric Schur-positive, then f is Schur-positive!

QSym is important!

- Relationship to posets
(P -partitions of Gessel and Stanley)
- Terminal object in category of combinatorial Hopf algebras
(Every combinatorial Hopf algebra maps uniquely to $QSym$)
- Dual to Solomon's descent algebra
(Subring of group ring $\mathbb{Z}\mathfrak{S}_n$ of permutations over integers)
- Expansions into Gessel's fundamentals
(Macdonald polynomials)
- Answer questions about symmetric functions
(For example, Schur expansion)



Question: What is dual to ψ in QSym ? to ϕ ?
 (Malvenuto-Reutenauer, Derksen)

Type 1

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}$$

In NSym , the **type 1 power sum basis** ψ is defined (GKLLRT) by the generating function relation

$$\frac{d}{dt} \mathbf{H}(t) = \mathbf{H}(t) \Psi(t).$$

This is equivalent to

$$\mathbf{h}_\alpha = \sum_{\beta \preccurlyeq \alpha} \frac{1}{\pi(\beta, \alpha)} \psi_\beta,$$

where $\pi(\beta, \alpha)$ is a combinatorial statistic on the refinement $\beta \preccurlyeq \alpha$. So, the dual in QSym will satisfy

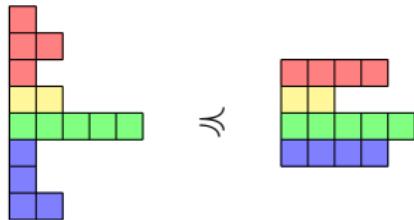
$$\psi_\alpha^* = \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta.$$

Define

$$\Psi_\alpha = z_{\tilde{\alpha}} \psi_\alpha^*, \quad \text{so that} \quad \langle \psi_\alpha, \Psi_\beta \rangle = z_{\tilde{\alpha}} \delta_{\alpha\beta}.$$

$$\Psi_\alpha = z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\pi(\alpha, \beta)} M_\beta$$

(diagrams courtesy of Zajj Daugherty)



First, for each block, we compute the product of the partial sums:

$$\pi \left(\begin{array}{|c|} \hline \text{red} \\ \hline \text{red} \\ \hline \text{red} \\ \hline \end{array} \right) = \left| \text{red} \right| \cdot \left| \begin{array}{|c|c|} \hline \text{red} & \text{red} \\ \hline \end{array} \right| \cdot \left| \begin{array}{|c|c|c|} \hline \text{red} & \text{red} & \text{red} \\ \hline \end{array} \right| = 1 \cdot 3 \cdot 4$$

Then, for α refining β , the coefficient of M_β in ψ_α^* is $1/\pi(\alpha, \beta)$, where

$$\begin{aligned} \pi \left(\begin{array}{|c|} \hline \text{red} \\ \hline \text{red} \\ \hline \text{red} \\ \hline \end{array}, \begin{array}{|c|c|} \hline \text{red} & \text{red} \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline \text{red} & \text{red} & \text{red} \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline \text{yellow} & \text{yellow} & \text{yellow} \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline \text{green} & \text{green} & \text{green} \\ \hline \end{array}, \begin{array}{|c|c|} \hline \text{blue} & \text{blue} \\ \hline \end{array} \right) &= \pi \left(\begin{array}{|c|} \hline \text{red} \\ \hline \text{red} \\ \hline \text{red} \\ \hline \end{array} \right) \pi \left(\begin{array}{|c|c|} \hline \text{yellow} & \text{yellow} \\ \hline \end{array} \right) \pi \left(\begin{array}{|c|c|c|} \hline \text{green} & \text{green} & \text{green} \\ \hline \end{array} \right) \pi \left(\begin{array}{|c|c|} \hline \text{blue} & \text{blue} \\ \hline \end{array} \right) \\ &= (1 \cdot 3 \cdot 4)(2)(5)(1 \cdot 2 \cdot 4) \end{aligned}$$

As another example, $z_{\square\square} = 2$,

$$\Psi_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} = z_{\begin{smallmatrix} \textcolor{red}{\square} & \textcolor{yellow}{\square} \\ \textcolor{yellow}{\square} & \end{smallmatrix}} \psi^*_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} = 2 \left(\frac{1}{2} M_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} + \frac{1}{3} M_{\begin{smallmatrix} \textcolor{orange}{\square} & \textcolor{orange}{\square} & \textcolor{orange}{\square} \end{smallmatrix}} \right),$$

$$\Psi_{\begin{smallmatrix} \textcolor{yellow}{\square} \\ \textcolor{red}{\square} \end{smallmatrix}} = z_{\begin{smallmatrix} \textcolor{yellow}{\square} & \textcolor{red}{\square} \\ \textcolor{red}{\square} & \end{smallmatrix}} \psi^*_{\begin{smallmatrix} \textcolor{yellow}{\square} \\ \textcolor{red}{\square} \end{smallmatrix}} = 2 \left(\frac{1}{2} M_{\begin{smallmatrix} \textcolor{yellow}{\square} \\ \textcolor{red}{\square} \end{smallmatrix}} + \frac{1}{6} M_{\begin{smallmatrix} \textcolor{orange}{\square} & \textcolor{orange}{\square} & \textcolor{orange}{\square} \end{smallmatrix}} \right).$$

So

$$\begin{aligned} \Psi_{\square\square} + \Psi_{\square\square} &= \textcolor{red}{M_{\square\square}} + \textcolor{red}{M_{\square\square}} + M_{\square\square\square} \\ &= \textcolor{red}{m_{\square\square}} + m_{\square\square\square} = m_{\square\square} m_{\square} = p_{\square\square} p_{\square} = p_{\square\square}. \end{aligned}$$

Theorem (BDHMN)

Type 1 QSym power sums refine Sym power sums:

$$p_\lambda = \sum_{\tilde{\alpha}=\lambda} \Psi_\alpha.$$

Type 2

In Sym the power sum basis is (essentially) self-dual:

$$\langle p_\lambda, p_\mu \rangle = z_\lambda \delta_{\lambda\mu}.$$

In NSym , the **type 2 power sum basis** is defined (GKLLRT) by the generating function relation

$$\mathbf{H}(t) = \exp \left(\int \Phi(t) dt \right)$$

This is equivalent to

$$\mathbf{h}_\alpha = \sum_{\beta \preccurlyeq \alpha} \frac{1}{\text{sp}(\beta, \alpha)} \phi_\beta,$$

where $\text{sp}(\beta, \alpha)$ is a combinatorial statistic on $\beta \preccurlyeq \alpha$.

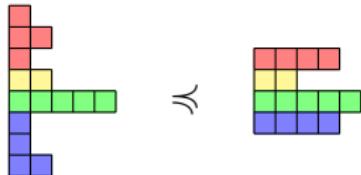
So, the dual in QSym will satisfy

$$\phi_\alpha^* = \sum_{\beta \succcurlyeq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta.$$

Define

$$\Phi_\alpha = z_{\tilde{\alpha}} \phi_\alpha^*, \quad \text{so that} \quad \langle \phi_\alpha, \Phi_\beta \rangle = z_\alpha \delta_{\alpha\beta}.$$

$$\Phi_\alpha = z_{\tilde{\alpha}} \sum_{\beta \succcurlyeq \alpha} \frac{1}{\text{sp}(\alpha, \beta)} M_\beta.$$



First, for each block, we compute $\text{sp}(\gamma) = \ell(\gamma)! \prod_k \gamma_j$:

$$\text{sp} \left(\begin{smallmatrix} & & \\ & & \\ & & \end{smallmatrix} \right) = 3!(1 \cdot 2 \cdot 1)$$

Then, for α refining β , the coeff of M_β in ψ_α^* is $1/\text{sp}(\alpha, \beta)$, where

$$\begin{aligned} \text{sp} \left(\begin{smallmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{smallmatrix}, \begin{smallmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \end{smallmatrix} \right) &= \text{sp} \left(\begin{smallmatrix} & & \\ & & \\ & & \end{smallmatrix} \right) \text{sp} \left(\begin{smallmatrix} & & \\ & & \\ & & \end{smallmatrix} \right) \text{sp} \left(\begin{smallmatrix} & & & \\ & & & \\ & & & \\ & & & \end{smallmatrix} \right) \text{sp} \left(\begin{smallmatrix} & & \\ & & \\ & & \\ & & \\ & & \end{smallmatrix} \right) \\ &= 3!(1 \cdot 2 \cdot 1) \cdot 1!(2) \cdot 1!(5) \cdot 3!(1 \cdot 1 \cdot 2) \end{aligned}$$

As another example, $z_{\square\square} = 2$,

$$\Phi_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} = z_{\begin{smallmatrix} \textcolor{yellow}{\square} & \textcolor{yellow}{\square} \\ \textcolor{red}{\square} & \textcolor{red}{\square} \end{smallmatrix}} \phi_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}}^* = 2 \left(\frac{1}{2} M_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} + \frac{1}{4} M_{\begin{smallmatrix} \textcolor{orange}{\square} & \textcolor{orange}{\square} & \textcolor{orange}{\square} \end{smallmatrix}} \right),$$

$$\Phi_{\begin{smallmatrix} \textcolor{yellow}{\square} & \textcolor{yellow}{\square} \\ \textcolor{red}{\square} \end{smallmatrix}} = z_{\begin{smallmatrix} \textcolor{yellow}{\square} & \textcolor{yellow}{\square} \\ \textcolor{red}{\square} & \textcolor{red}{\square} \end{smallmatrix}} \phi_{\begin{smallmatrix} \textcolor{yellow}{\square} & \textcolor{yellow}{\square} \\ \textcolor{red}{\square} & \textcolor{red}{\square} \end{smallmatrix}}^* = 2 \left(\frac{1}{2} M_{\begin{smallmatrix} \textcolor{red}{\square} \\ \textcolor{yellow}{\square} \end{smallmatrix}} + \frac{1}{4} M_{\begin{smallmatrix} \textcolor{orange}{\square} & \textcolor{orange}{\square} & \textcolor{orange}{\square} \end{smallmatrix}} \right).$$

So

$$\begin{aligned} \Phi_{\begin{smallmatrix} \square \\ \square \end{smallmatrix}} + \Phi_{\begin{smallmatrix} \square & \square \\ \square \end{smallmatrix}} &= M_{\begin{smallmatrix} \square \\ \square \end{smallmatrix}} + M_{\begin{smallmatrix} \square & \square \\ \square \end{smallmatrix}} + M_{\begin{smallmatrix} \square & \square & \square \end{smallmatrix}} \\ &= m_{\begin{smallmatrix} \square & \square \\ \square \end{smallmatrix}} + m_{\begin{smallmatrix} \square & \square & \square \end{smallmatrix}} = m_{\begin{smallmatrix} \square \\ \square \end{smallmatrix}} m_{\begin{smallmatrix} \square \end{smallmatrix}} = p_{\begin{smallmatrix} \square \\ \square \end{smallmatrix}} p_{\begin{smallmatrix} \square \end{smallmatrix}} = p_{\begin{smallmatrix} \square & \square \\ \square \end{smallmatrix}}. \end{aligned}$$

Theorem (BDHMN)

Type 2 QSym power sums refine Sym power sums:

$$p_\lambda = \sum_{\tilde{\alpha}=\lambda} \Phi_\alpha.$$

Results about quasisymmetric power sums

- $\Psi_\alpha \Psi_\beta = \frac{z_\alpha z_\beta}{z_{\alpha \cdot \beta}} \sum_{\gamma \in \alpha \sqcup \beta} \Psi_{\text{wd}(\gamma)}$ (BDHMN)
- $\Phi_\alpha \Phi_\beta = \frac{z_\alpha z_\beta}{z_{\alpha \cdot \beta}} \sum_{\gamma \in \alpha \sqcup \beta} \Phi_{\text{wd}(\gamma)}$ (BDHMN)
- The set of quasisymmetric power sums indexed by Lyndon words forms a multiplicative basis for QSym .
- Formulas for expansion into **fundamentals** (BDHMN)
- Formulas for the expansion of **fundamentals** into quasisymmetric power sums (Alexandersson-Sulzgruber)
- Expansions of generating functions of **reverse P -partitions** into quasisymmetric power sums (Alexandersson-Sulzgruber)

Plethysm

- V, W, Y finite dimensional complex vector spaces
- $GL(V) =$ group of invertible linear transformations
 $A : V \rightarrow V$ (under composition)
- polynomial reps $h : GL(V) \rightarrow GL(W)$, $k : GL(W) \rightarrow GL(Y)$
- composition $kh : GL(V) \rightarrow GL(Y)$ defines a polynomial representation of $GL(V)$

Then $char(h) = \sum_{i=1}^N \theta^{a^i}$, where the θ^a are monomials in the eigenvalues of some $A \in GL(V)$.

$$char(kh) = char(k)(\theta^{a^1}, \dots, \theta^{a^N})$$

Given a function $f = \sum_{i \geq 1} x^{a^i} \in \text{Sym}$ and $g \in \text{Sym}$, the **plethysm** $g[f]$ is defined by

$$g[f] = g(x^{a^1}, x^{a^2}, \dots).$$

Kostka-Foulkes Conjecture:

Schur positivity of $s_m[s_n] - s_n[s_m]$

On the symmetric power sums, plethysm is beautiful:

$p_m[p_n] = p_{mn}$, $p_{a,b}[p_{c,d}] = p_{ac,ad,bc,bd}$, etc...

Natural (naive) question:

Is there a “nice” formula for $\psi_\alpha[\psi_\beta]$? (similarly for $\phi_\alpha[\phi_\beta]$?)

Kostka-Foulkes Conjecture:

Schur positivity of $s_m[s_n] - s_n[s_m]$

On the symmetric power sums, plethysm is beautiful:

$p_m[p_n] = p_{mn}$, $p_{a,b}[p_{c,d}] = p_{ac,ad,bc,bd}$, etc...

Natural (naive) question:

Is there a “nice” formula for $\psi_\alpha[\psi_\beta]$? (similarly for $\phi_\alpha[\phi_\beta]$?)

The short answer is “no”!

A slightly longer answer

For plethysm on QSym , the order of the variables matters:

$$M_{21}[\Psi_2(x_1, x_2)] = M_{21}[x_1^2 + x_2^2] = M_{21}(x_1^2, x_2^2) = x_1^4 x_2^2 = M_{42}$$

$$M_{21}[x_2^2 + x_1^2] = M_{21}(x_2^2, x_1^2) = x_2^4 x_1^2 = M_{24}$$

Is there a natural order on monomials under which a “nice” formula for $\psi_\alpha[\psi_\beta]$ exists?

$$\begin{aligned} p_{21}[p_{11}] &= p_{2211} \\ &= \psi_{2211} + \psi_{2121} + \psi_{2112} + \psi_{1122} + \psi_{1212} + \psi_{1221} \\ &= (\psi_{21} + \psi_{12})[\psi_{11}] \\ &= \psi_{21}[\psi_{11}] + \psi_{12}[\psi_{11}] \end{aligned}$$

Still “no”, but for some positivity...

Theorem (Loehr-Remmel, 2011)

Let \mathcal{A} be an ordered alphabet consisting of signed monomials. The signed weight $wt(\mathcal{A})$ of the alphabet is obtained by summing the signed monomials in order. Then

$$s_\lambda[wt(\mathcal{A})] = \sum_{T \in SSYT_{\mathcal{A}}(\lambda)} wt(T).$$

Corollary (Allen, M, Moore, 2018)

Similarly,

$$YQS_\lambda[wt(\mathcal{A})] = \sum_{T \in YCT_{\mathcal{A}}(\lambda)} wt(T).$$

Useful since a symmetric function with a positive quasisymmetric Schur expansion is automatically Schur positive.

Several References

- Alexandersson, P. and Sulzgruber, R. “ P -partitions and p -positivity.” 2018, arXiv:1807.02460v2.
- Ballantine, C, Daugherty, Z, Hicks, A, Mason, S, and Niese, E. “Quasisymmetric Power Sums.” *Submitted for publication*, 2018, arXiv:1710.11613.
- Gelfand, et al. “Noncommutative symmetric functions.” *Advances in Math*, 1995.
- Loehr, N. and Remmel, J. “A computational and combinatorial exposé of plethystic calculus.” *Journal of Algebraic Combinatorics*, 2011.

THANK YOU!