

$sl(\infty)$ -modules arising from categorical action on
the category \mathcal{O} for general linear superalgebra.

Vera Serganova

Joint work with C. Hoyt and I. Penkov.
arXiv:1712.00664, Journal of LMS.

UC Berkeley

AMS meeting, San Francisco, October 2018

Classical Lie superalgebra $\mathfrak{gl}(m|n)$

Let $V = V_0 \oplus V_1$ be a vector superspace of dimension $(m|n)$.

The **general linear Lie superalgebra** $\mathfrak{g} := \mathfrak{gl}(m|n)$ is the algebra $\text{End}_k(V)$ of linear transformations of V

- the supercommutator $[X, Y] = XY - (-1)^{\bar{X}\bar{Y}} YX$ **sign rule**;

- Elements are matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$,

- even part $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, odd part $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$.

Invariant symmetric form: $\text{str } XY$ leads to the invariant element in $\mathfrak{g} \otimes \mathfrak{g}$:

$$\Omega := \sum (-1)^{\bar{X}_i} X_i \otimes X^i.$$

If M, N are $\mathfrak{gl}(m|n)$ -modules, then $\Omega : M \otimes N \rightarrow M \otimes N$ commutes with $\mathfrak{sl}(\infty)$ -action.

Classical Lie superalgebra $\mathfrak{gl}(m|n)$

Let $V = V_0 \oplus V_1$ be a vector superspace of dimension $(m|n)$.

The **general linear Lie superalgebra** $\mathfrak{g} := \mathfrak{gl}(m|n)$ is the algebra $\text{End}_k(V)$ of linear transformations of V

- the supercommutator $[X, Y] = XY - (-1)^{\bar{X}\bar{Y}} YX$ **sign rule**;
- Elements are matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$,
- even part $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, odd part $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$.

Invariant symmetric form: $\text{str } XY$ leads to the invariant element in $\mathfrak{g} \otimes \mathfrak{g}$:

$$\Omega := \sum (-1)^{\bar{X}_i} X_i \otimes X^i.$$

If M, N are $\mathfrak{gl}(m|n)$ -modules, then $\Omega : M \otimes N \rightarrow M \otimes N$ commutes with $\mathfrak{sl}(\infty)$ -action.

Classical Lie superalgebra $\mathfrak{gl}(m|n)$

Let $V = V_0 \oplus V_1$ be a vector superspace of dimension $(m|n)$.

The **general linear Lie superalgebra** $\mathfrak{g} := \mathfrak{gl}(m|n)$ is the algebra $\text{End}_k(V)$ of linear transformations of V

- the supercommutator $[X, Y] = XY - (-1)^{\bar{X}\bar{Y}} YX$ **sign rule**;
- Elements are matrices $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$,
- even part $\left(\begin{array}{c|c} A & 0 \\ \hline 0 & D \end{array}\right)$, odd part $\left(\begin{array}{c|c} 0 & B \\ \hline C & 0 \end{array}\right)$.

Invariant symmetric form: $\text{str } XY$ leads to the invariant element in $\mathfrak{g} \otimes \mathfrak{g}$:

$$\Omega := \sum (-1)^{\bar{X}_i} X_i \otimes X^i.$$

If M, N are $\mathfrak{gl}(m|n)$ -modules, then $\Omega : M \otimes N \rightarrow M \otimes N$ commutes with $\mathfrak{sl}(\infty)$ -action.

Classical Lie superalgebra $\mathfrak{gl}(m|n)$

Let $V = V_0 \oplus V_1$ be a vector superspace of dimension $(m|n)$.

The **general linear Lie superalgebra** $\mathfrak{g} := \mathfrak{gl}(m|n)$ is the algebra $\text{End}_k(V)$ of linear transformations of V

- the supercommutator $[X, Y] = XY - (-1)^{\bar{X}\bar{Y}} YX$ **sign rule**;
- Elements are matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$,
- even part $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, odd part $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$.

Invariant symmetric form: $\text{str } XY$ leads to the invariant element in $\mathfrak{g} \otimes \mathfrak{g}$:

$$\Omega := \sum (-1)^{\bar{X}_i} X_i \otimes X^i.$$

If M, N are $\mathfrak{gl}(m|n)$ -modules, then $\Omega : M \otimes N \rightarrow M \otimes N$ commutes with $\mathfrak{sl}(\infty)$ -action.

Classical Lie superalgebra $\mathfrak{gl}(m|n)$

Let $V = V_0 \oplus V_1$ be a vector superspace of dimension $(m|n)$.

The **general linear Lie superalgebra** $\mathfrak{g} := \mathfrak{gl}(m|n)$ is the algebra $\text{End}_k(V)$ of linear transformations of V

- the supercommutator $[X, Y] = XY - (-1)^{\bar{X}\bar{Y}} YX$ **sign rule**;
- Elements are matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$,
- even part $\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, odd part $\begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$.

Invariant symmetric form: $\text{str } XY$ leads to the invariant element in $\mathfrak{g} \otimes \mathfrak{g}$:

$$\Omega := \sum (-1)^{\bar{X}_i} X_i \otimes X^i.$$

If M, N are $\mathfrak{gl}(m|n)$ -modules, then $\Omega : M \otimes N \rightarrow M \otimes N$ commutes with $\mathfrak{sl}(\infty)$ -action.

Category \mathcal{O}

- \mathfrak{b} subalgebra of upper triangular matrices, \mathfrak{h} Cartan subalgebra;
- $\mathcal{O}_{m|n}$ the category of modules, semisimple over \mathfrak{h} with **integral weights**, locally finite over \mathfrak{b} and finitely generated;
- Highest weight category. Standard objects are Verma modules $M(\lambda) = \text{Ind}_{\mathfrak{b}}^{\mathfrak{g}} C_\lambda$;
- Kazhdan–Lusztig theory: Cheng–Lam–Wang, Brundan–Losev–Webster.

Remark. Reduced Grothendieck group: $[M] = -[M \otimes \mathbb{C}^{0|1}]$.

Category \mathcal{O}

- \mathfrak{b} subalgebra of upper triangular matrices, \mathfrak{h} Cartan subalgebra;
- $\mathcal{O}_{m|n}$ the category of modules, semisimple over \mathfrak{h} with **integral weights**, locally finite over \mathfrak{b} and finitely generated;
- Highest weight category. Standard objects are Verma modules $M(\lambda) = \text{Ind}_{\mathfrak{b}}^{\mathfrak{g}} C_\lambda$;
- Kazhdan–Lusztig theory: Cheng–Lam–Wang, Brundan–Losev–Webster.

Remark. Reduced Grothendieck group: $[M] = -[M \otimes \mathbb{C}^{0|1}]$.

Category \mathcal{O}

- \mathfrak{b} subalgebra of upper triangular matrices, \mathfrak{h} Cartan subalgebra;
- $\mathcal{O}_{m|n}$ the category of modules, semisimple over \mathfrak{h} with **integral weights**, locally finite over \mathfrak{b} and finitely generated;
- Highest weight category. Standard objects are Verma modules $M(\lambda) = \text{Ind}_{\mathfrak{b}}^{\mathfrak{g}} C_\lambda$;
- Kazhdan–Lusztig theory: Cheng–Lam–Wang, Brundan–Losev–Webster.

Remark. Reduced Grothendieck group: $[M] = -[M \otimes \mathbb{C}^{0|1}]$.

Category \mathcal{O}

- \mathfrak{b} subalgebra of upper triangular matrices, \mathfrak{h} Cartan subalgebra;
- $\mathcal{O}_{m|n}$ the category of modules, semisimple over \mathfrak{h} with **integral weights**, locally finite over \mathfrak{b} and finitely generated;
- Highest weight category. Standard objects are Verma modules $M(\lambda) = \text{Ind}_{\mathfrak{b}}^{\mathfrak{g}} C_\lambda$;
- Kazhdan–Lusztig theory: Cheng–Lam–Wang, Brundan–Losev–Webster.

Remark. Reduced Grothendieck group: $[M] = -[M \otimes \mathbb{C}^{0|1}]$.

Category \mathcal{O}

- \mathfrak{b} subalgebra of upper triangular matrices, \mathfrak{h} Cartan subalgebra;
- $\mathcal{O}_{m|n}$ the category of modules, semisimple over \mathfrak{h} with **integral weights**, locally finite over \mathfrak{b} and finitely generated;
- Highest weight category. Standard objects are Verma modules $M(\lambda) = \text{Ind}_{\mathfrak{b}}^{\mathfrak{g}} C_\lambda$;
- Kazhdan–Lusztig theory: Cheng–Lam–Wang, Brundan–Losev–Webster.

Remark. **Reduced Grothendieck group:** $[M] = -[M \otimes \mathbb{C}^{0|1}]$.

Brundan's categorification

- Let $i \in \mathbb{Z}$, $M \in \mathcal{O}_{m|n}$, let $E_i M$ (resp. $F_i M$) be the generalized eigenspace of Ω in $M \otimes V$ (resp. $M \otimes V^*$) with eigenvalue i .
Mutually adjoint exact functors E_i and $F_i : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m|n}$.
- Let $\mathbf{K}_{m|n}$ be the complexified reduced Grothendieck group of $\mathcal{O}_{m|n}$. Then E_i, F_i induce linear operators $e_i, f_i : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m|n}$.
- $e_i, f_i, i \in \mathbb{Z}$ satisfy Serre's relation for the infinite-dimensional Lie algebra $\mathfrak{sl}(\infty)$ with the Dynkin diagram A_∞

$$\cdots - \circ - \circ - \circ - \cdots$$

- $\mathbf{K}_{m|n}$ is an integrable $\mathfrak{sl}(\infty)$ -module, $\mathfrak{sl}(\infty)$ -weight spaces are blocks in $\mathcal{O}_{m|n}$.

Brundan's categorification

- Let $i \in \mathbb{Z}$, $M \in \mathcal{O}_{m|n}$, let $E_i M$ (resp. $F_i M$) be the generalized eigenspace of Ω in $M \otimes V$ (resp. $M \otimes V^*$) with eigenvalue i . Mutually adjoint exact functors E_i and $F_i : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m|n}$.
- Let $\mathbf{K}_{m|n}$ be the complexified reduced Grothendieck group of $\mathcal{O}_{m|n}$. Then E_i, F_i induce linear operators $e_i, f_i : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m|n}$.
- $e_i, f_i, i \in \mathbb{Z}$ satisfy Serre's relation for the infinite-dimensional Lie algebra $\mathfrak{sl}(\infty)$ with the Dynkin diagram A_∞

$$\cdots - \circ - \circ - \circ - \cdots$$

- $\mathbf{K}_{m|n}$ is an integrable $\mathfrak{sl}(\infty)$ -module, $\mathfrak{sl}(\infty)$ -weight spaces are blocks in $\mathcal{O}_{m|n}$.

Brundan's categorification

- Let $i \in \mathbb{Z}$, $M \in \mathcal{O}_{m|n}$, let $E_i M$ (resp. $F_i M$) be the generalized eigenspace of Ω in $M \otimes V$ (resp. $M \otimes V^*$) with eigenvalue i . Mutually adjoint exact functors E_i and $F_i : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m|n}$.
- Let $\mathbf{K}_{m|n}$ be the complexified reduced Grothendieck group of $\mathcal{O}_{m|n}$. Then E_i, F_i induce linear operators $e_i, f_i : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m|n}$.
- $e_i, f_i, i \in \mathbb{Z}$ satisfy Serre's relation for the infinite-dimensional Lie algebra $\mathfrak{sl}(\infty)$ with the Dynkin diagram A_∞

$$\cdots - \circ - \circ - \circ - \cdots$$

- $\mathbf{K}_{m|n}$ is an integrable $\mathfrak{sl}(\infty)$ -module, $\mathfrak{sl}(\infty)$ -weight spaces are blocks in $\mathcal{O}_{m|n}$.

Brundan's categorification

- Let $i \in \mathbb{Z}$, $M \in \mathcal{O}_{m|n}$, let $E_i M$ (resp. $F_i M$) be the generalized eigenspace of Ω in $M \otimes V$ (resp. $M \otimes V^*$) with eigenvalue i . Mutually adjoint exact functors E_i and $F_i : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m|n}$.
- Let $\mathbf{K}_{m|n}$ be the complexified reduced Grothendieck group of $\mathcal{O}_{m|n}$. Then E_i, F_i induce linear operators $e_i, f_i : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m|n}$.
- $e_i, f_i, i \in \mathbb{Z}$ satisfy Serre's relation for the infinite-dimensional Lie algebra $\mathfrak{sl}(\infty)$ with the Dynkin diagram A_∞

$$\cdots - \circ - \circ - \circ - \dots$$

- $\mathbf{K}_{m|n}$ is an integrable $\mathfrak{sl}(\infty)$ -module, $\mathfrak{sl}(\infty)$ -weight spaces are blocks in $\mathcal{O}_{m|n}$.

Brundan's categorification

- Let $i \in \mathbb{Z}$, $M \in \mathcal{O}_{m|n}$, let $E_i M$ (resp. $F_i M$) be the generalized eigenspace of Ω in $M \otimes V$ (resp. $M \otimes V^*$) with eigenvalue i . Mutually adjoint exact functors E_i and $F_i : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m|n}$.
- Let $\mathbf{K}_{m|n}$ be the complexified reduced Grothendieck group of $\mathcal{O}_{m|n}$. Then E_i, F_i induce linear operators $e_i, f_i : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m|n}$.
- $e_i, f_i, i \in \mathbb{Z}$ satisfy Serre's relation for the infinite-dimensional Lie algebra $\mathfrak{sl}(\infty)$ with the Dynkin diagram A_∞

$$\cdots - \circ - \circ - \circ - \dots$$

- $\mathbf{K}_{m|n}$ is an integrable $\mathfrak{sl}(\infty)$ -module, $\mathfrak{sl}(\infty)$ -weight spaces are blocks in $\mathcal{O}_{m|n}$.

Goals

- Describe the structure of $K_{m|n}$ as an $\mathfrak{sl}(\infty)$ -module. Compute the socle filtration of $K_{m|n}$ and understand its categorical meaning.
- Relate $\mathfrak{sl}(\infty)$ -morphisms $K_{m|n} \rightarrow K_{m-1|n-1}$ with certain tensor functors $DS : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-1|n-1}$.
- Give an interpretation of non-semisimplicity of $K_{m|n}$ in terms of homological properties of $\mathcal{O}_{m|n}$. Infinite cohomological dimension.

Goals

- Describe the structure of $K_{m|n}$ as an $\mathfrak{sl}(\infty)$ -module. Compute the socle filtration of $K_{m|n}$ and understand its categorical meaning.
- Relate $\mathfrak{sl}(\infty)$ -morphisms $K_{m|n} \rightarrow K_{m-1|n-1}$ with certain tensor functors $DS : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-1|n-1}$.
- Give an interpretation of non-semisimplicity of $K_{m|n}$ in terms of homological properties of $\mathcal{O}_{m|n}$. Infinite cohomological dimension.

Goals

- Describe the structure of $\mathbf{K}_{m|n}$ as an $\mathfrak{sl}(\infty)$ -module. Compute the socle filtration of $\mathbf{K}_{m|n}$ and understand its categorical meaning.
- Relate $\mathfrak{sl}(\infty)$ -morphisms $\mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m-1|n-1}$ with certain tensor functors $DS : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-1|n-1}$.
- Give an interpretation of non-semisimplicity of $\mathbf{K}_{m|n}$ in terms of homological properties of $\mathcal{O}_{m|n}$. Infinite cohomological dimension.

Example.

$\mathcal{O}_{1|1}$ coincides with the category $\mathcal{F}_{1|1}$ of finite-dimensional $\mathfrak{gl}(1|1)$ -modules. Let us describe the $\mathfrak{sl}(\infty)$ -module $\mathbf{K}_{1|1}$. Let \mathbf{E} and \mathbf{E}_* denote the natural and conatural $\mathfrak{sl}(\infty)$ -modules. We have the **non-split** exact sequence

$$0 \rightarrow \mathbf{P}_{1|1} \rightarrow \mathbf{E} \otimes \mathbf{E}_* \xrightarrow{\text{tr}} \mathbb{C} \rightarrow 0,$$

where $\mathbf{P}_{1|1}$ corresponds to the Grothendieck subgroup of $\mathbf{K}_{1|1}$ generated by classes of projective modules. Furthermore, $\mathbf{E} \otimes \mathbf{E}_*$ is identified with the Grothendieck subgroup generated by classes of Verma modules. However, $\mathbf{K}_{1|1} \neq \mathbf{E} \otimes \mathbf{E}_*$. We have another **non-split** exact sequence

$$0 \rightarrow \mathbf{E} \otimes \mathbf{E}_* \rightarrow \mathbf{K}_{1|1} \rightarrow \mathbb{C} \rightarrow 0.$$

To describe the $\mathfrak{sl}(\infty)$ -structure of $\mathbf{K}_{1|1}$ identify $\mathbf{E} \otimes \mathbf{E}_*$ with the Lie algebra $\mathfrak{gl}(\infty)$ of finitary infinite matrices $\{(a_{ij})\}_{i,j \in \mathbb{Z}}$. Then $\mathbf{K}_{1|1} = \mathfrak{gl}(\infty) \oplus \mathbb{C}J$, where $J_{ij} = \text{sgn}(i)\delta_{ij}$.

Example.

$\mathcal{O}_{1|1}$ coincides with the category $\mathcal{F}_{1|1}$ of finite-dimensional $\mathfrak{gl}(1|1)$ -modules. Let us describe the $\mathfrak{sl}(\infty)$ -module $\mathbf{K}_{1|1}$. Let \mathbf{E} and \mathbf{E}_* denote the natural and conatural $\mathfrak{sl}(\infty)$ -modules. We have the **non-split** exact sequence

$$0 \rightarrow \mathbf{P}_{1|1} \rightarrow \mathbf{E} \otimes \mathbf{E}_* \xrightarrow{\text{tr}} \mathbb{C} \rightarrow 0,$$

where $\mathbf{P}_{1|1}$ corresponds to the Grothendieck subgroup of $\mathbf{K}_{1|1}$ generated by classes of projective modules. Furthermore, $\mathbf{E} \otimes \mathbf{E}_*$ is identified with the Grothendieck subgroup generated by classes of Verma modules. However, $\mathbf{K}_{1|1} \neq \mathbf{E} \otimes \mathbf{E}_*$. We have another **non-split** exact sequence

$$0 \rightarrow \mathbf{E} \otimes \mathbf{E}_* \rightarrow \mathbf{K}_{1|1} \rightarrow \mathbb{C} \rightarrow 0.$$

To describe the $\mathfrak{sl}(\infty)$ -structure of $\mathbf{K}_{1|1}$ identify $\mathbf{E} \otimes \mathbf{E}_*$ with the Lie algebra $\mathfrak{gl}(\infty)$ of finitary infinite matrices $\{(a_{ij})\}_{i,j \in \mathbb{Z}}$. Then $\mathbf{K}_{1|1} = \mathfrak{gl}(\infty) \oplus \mathbb{C}J$, where $J_{ij} = \text{sgn}(i)\delta_{ij}$.

Example.

$\mathcal{O}_{1|1}$ coincides with the category $\mathcal{F}_{1|1}$ of finite-dimensional $\mathfrak{gl}(1|1)$ -modules. Let us describe the $\mathfrak{sl}(\infty)$ -module $\mathbf{K}_{1|1}$. Let \mathbf{E} and \mathbf{E}_* denote the natural and conatural $\mathfrak{sl}(\infty)$ -modules. We have the **non-split** exact sequence

$$0 \rightarrow \mathbf{P}_{1|1} \rightarrow \mathbf{E} \otimes \mathbf{E}_* \xrightarrow{\text{tr}} \mathbb{C} \rightarrow 0,$$

where $\mathbf{P}_{1|1}$ corresponds to the Grothendieck subgroup of $\mathbf{K}_{1|1}$ generated by classes of projective modules. Furthermore, $\mathbf{E} \otimes \mathbf{E}_*$ is identified with the Grothendieck subgroup generated by classes of Verma modules. However, $\mathbf{K}_{1|1} \neq \mathbf{E} \otimes \mathbf{E}_*$. We have another **non-split** exact sequence

$$0 \rightarrow \mathbf{E} \otimes \mathbf{E}_* \rightarrow \mathbf{K}_{1|1} \rightarrow \mathbb{C} \rightarrow 0.$$

To describe the $\mathfrak{sl}(\infty)$ -structure of $\mathbf{K}_{1|1}$ identify $\mathbf{E} \otimes \mathbf{E}_*$ with the Lie algebra $\mathfrak{gl}(\infty)$ of finitary infinite matrices $\{(a_{ij})\}_{i,j \in \mathbb{Z}}$. Then $\mathbf{K}_{1|1} = \mathfrak{gl}(\infty) \oplus \mathbb{C}J$, where $J_{ij} = \text{sgn}(i)\delta_{ij}$.

Continuation of the example. Socle filtration.

$$\mathbf{P}_{1|1} = \text{soc } \mathbf{K}_{1|1} \simeq \mathfrak{sl}(\infty), \quad \mathbf{K}_{1|1}/\mathfrak{sl}(\infty) = \mathbb{C}^2.$$

$$\dim \text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C}) = 2.$$

Choose a basis in \mathfrak{g}_1 :

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Define the functors $\mathcal{O}_{1|1} \rightarrow \text{Svect}$ by

$$DS_x M = \text{Ker } x_M / \text{Im } x_M, \quad DS_y M = \text{Ker } y_M / \text{Im } y_M.$$

Those are tensor functors which induce a basis in $\text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C})$.

Continuation of the example. Socle filtration.

$$\mathbf{P}_{1|1} = \text{soc } \mathbf{K}_{1|1} \simeq \mathfrak{sl}(\infty), \quad \mathbf{K}_{1|1}/\mathfrak{sl}(\infty) = \mathbb{C}^2.$$

$$\dim \text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C}) = 2.$$

Choose a basis in \mathfrak{g}_1 :

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Define the functors $\mathcal{O}_{1|1} \rightarrow \text{Svect}$ by

$$DS_x M = \text{Ker } x_M / \text{Im } x_M, \quad DS_y M = \text{Ker } y_M / \text{Im } y_M.$$

Those are tensor functors which induce a basis in $\text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C})$.

Continuation of the example. Socle filtration.

$$\mathbf{P}_{1|1} = \text{soc } \mathbf{K}_{1|1} \simeq \mathfrak{sl}(\infty), \quad \mathbf{K}_{1|1}/\mathfrak{sl}(\infty) = \mathbb{C}^2.$$

$$\dim \text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C}) = 2.$$

Choose a basis in \mathfrak{g}_1 :

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Define the functors $\mathcal{O}_{1|1} \rightarrow \text{Svect}$ by

$$DS_x M = \text{Ker } x_M / \text{Im } x_M, \quad DS_y M = \text{Ker } y_M / \text{Im } y_M.$$

Those are tensor functors which induce a basis in $\text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C})$.

Continuation of the example. Socle filtration.

$$\mathbf{P}_{1|1} = \text{soc } \mathbf{K}_{1|1} \simeq \mathfrak{sl}(\infty), \quad \mathbf{K}_{1|1}/\mathfrak{sl}(\infty) = \mathbb{C}^2.$$

$$\dim \text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C}) = 2.$$

Choose a basis in \mathfrak{g}_1 :

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Define the functors $\mathcal{O}_{1|1} \rightarrow \text{Svect}$ by

$$DS_x M = \text{Ker } x_M / \text{Im } x_M, \quad DS_y M = \text{Ker } y_M / \text{Im } y_M.$$

Those are tensor functors which induce a basis in $\text{Hom}_{\mathfrak{sl}(\infty)}(\mathbf{K}_{1|1}, \mathbb{C})$.

A category of $\mathfrak{sl}(\infty)$ -modules.

Definition

Let \mathcal{T} denote the full subcategory of $\mathfrak{sl}(\infty)$ -modules consisting of modules U satisfying the following conditions:

- 1 U is an integrable module of finite length.
- 2 Simple constituents of U are tensor modules $S(\lambda, \mu) \subset \mathbf{E}^{\otimes |\lambda|} \otimes \mathbf{E}_*^{\otimes |\mu|}$ (here (λ, μ) is a bipartition).
- 3 For any $u \in U$ we have $e_i u = f_i u = 0$ for all but finitely many $i \in \mathbb{Z}$.

Theorem

The category \mathcal{T} has enough injective objects. The injective hull $I(\lambda, \mu)$ of $S(\lambda, \mu)$ has the socle filtration:

$$[\frac{\text{soc}_{k+1} I(\lambda, \mu)}{\text{soc}_k I(\lambda, \mu)} : S(\lambda', \mu')] = \sum_{|\gamma|+|\delta|=k} N_{\lambda', \gamma, \delta}^{\lambda} N_{\mu', \gamma, \delta}^{\mu}$$

where $N_{\nu', \gamma, \delta}^{\nu}$ are the Littlewood–Richardson coefficients.

Conjecture. \mathcal{T} is Koszul.

Theorem

The category \mathcal{T} has enough injective objects. The injective hull $I(\lambda, \mu)$ of $S(\lambda, \mu)$ has the socle filtration:

$$[\frac{\text{soc}_{k+1} I(\lambda, \mu)}{\text{soc}_k I(\lambda, \mu)} : S(\lambda', \mu')] = \sum_{|\gamma|+|\delta|=k} N_{\lambda', \gamma, \delta}^{\lambda} N_{\mu', \gamma, \delta}^{\mu}$$

where $N_{\nu', \gamma, \delta}^{\nu}$ are the Littlewood–Richardson coefficients.

Conjecture. \mathcal{T} is Koszul.

Main results.

Theorem

- ① $K_{m|n}$ is an injective object of \mathcal{T} .
- ② The submodule $E^{\otimes m} \otimes E_*^{\otimes n} \hookrightarrow K_{m|n}$ is isomorphic to the subgroup generated by the classes of all Verma modules.
- ③ The socle of $K_{m|n}$ is isomorphic to the subgroup generated by the classes of all projective objects in $\mathcal{O}_{m|n}$.

The Zuckerman functor

Let $\mathcal{F}_{m|n}$ be the category of finite-dimensional $\mathfrak{gl}(m|n)$ -modules semisimple over \mathfrak{h} and $\mathbf{J}_{m|n}$ denote its complexified reduced Grothendieck group.

For $M \in \mathcal{O}_{m|n}$ denote by ΓM the subset of all \mathfrak{g}_0 -finite vectors. Then Γ defines a left exact functor $\mathcal{O}_{m|n} \rightarrow \mathcal{F}_{m|n}$. Its derived functor Γ^i is called the Zuckerman functor.

Theorem

- ① $\mathbf{J}_{m,n}$ is the injective hull of $S(1^m, 1^n)$
- ② The map $[M] \rightarrow \sum (-1)^i [\Gamma^i M]$ defines an $\mathfrak{sl}(\infty)$ -equivariant map $\gamma : \mathbf{K}_{m|n} \rightarrow \mathbf{J}_{m|n}$.
- ③ The restriction of γ to $\mathbf{E}^{\otimes m} \otimes \mathbf{E}_*^{\otimes n} \hookrightarrow \mathbf{K}_{m|n}$ coincides with the natural projector to $\Lambda^m \mathbf{E} \otimes \Lambda^n \mathbf{E}_*$.

The Zuckerman functor

Let $\mathcal{F}_{m|n}$ be the category of finite-dimensional $\mathfrak{gl}(m|n)$ -modules semisimple over \mathfrak{h} and $\mathbf{J}_{m|n}$ denote its complexified reduced Grothendieck group.

For $M \in \mathcal{O}_{m|n}$ denote by ΓM the subset of all \mathfrak{g}_0 -finite vectors. Then Γ defines a left exact functor $\mathcal{O}_{m|n} \rightarrow \mathcal{F}_{m|n}$. Its derived functor Γ^i is called the Zuckerman functor.

Theorem

- ① $\mathbf{J}_{m,n}$ is the injective hull of $S(1^m, 1^n)$
- ② The map $[M] \rightarrow \sum (-1)^i [\Gamma^i M]$ defines an $\mathfrak{sl}(\infty)$ -equivariant map $\gamma : \mathbf{K}_{m|n} \rightarrow \mathbf{J}_{m|n}$.
- ③ The restriction of γ to $\mathbf{E}^{\otimes m} \otimes \mathbf{E}_*^{\otimes n} \hookrightarrow \mathbf{K}_{m|n}$ coincides with the natural projector to $\Lambda^m \mathbf{E} \otimes \Lambda^n \mathbf{E}_*$.

The Zuckerman functor

Let $\mathcal{F}_{m|n}$ be the category of finite-dimensional $\mathfrak{g} := \mathfrak{gl}(m|n)$ -modules semisimple over \mathfrak{h} and $\mathbf{J}_{m|n}$ denote its complexified reduced Grothendieck group.

For $M \in \mathcal{O}_{m|n}$ denote by ΓM the subset of all \mathfrak{g}_0 -finite vectors. Then Γ defines a left exact functor $\mathcal{O}_{m|n} \rightarrow \mathcal{F}_{m|n}$. Its derived functor Γ^i is called the Zuckerman functor.

Theorem

- ① $\mathbf{J}_{m,n}$ is the injective hull of $S(1^m, 1^n)$
- ② The map $[M] \rightarrow \sum (-1)^i [\Gamma^i M]$ defines an $\mathfrak{sl}(\infty)$ -equivariant map $\gamma : \mathbf{K}_{m|n} \rightarrow \mathbf{J}_{m|n}$.
- ③ The restriction of γ to $\mathbf{E}^{\otimes m} \otimes \mathbf{E}_*^{\otimes n} \hookrightarrow \mathbf{K}_{m|n}$ coincides with the natural projector to $\Lambda^m \mathbf{E} \otimes \Lambda^n \mathbf{E}_*$.

DS functors.

For $\mathfrak{g} = \mathfrak{gl}(m|n)$ let

$$X := \{x \in \mathfrak{g}_1 \mid [x, x] = 0\},$$

$$X_k := \{x \in \mathfrak{g}_1 \mid [x, x] = 0, \text{rk}(x) = k\}, \quad k \leq \min(m, n).$$

For a \mathfrak{g} -module M define $DS_x M := \ker x_M / \text{im} x_M$.

Theorem

Let $x \in X_k$.

- 1 $DS_x : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-k|n-k}$ is a symmetric monoidal functor which commutes with translation functors E_i, F_i .
- 2 Passage to the Grothendieck groups induces a homomorphism of $\mathfrak{sl}(\infty)$ -modules $ds_x : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m-k|n-k}$.

DS functors.

For $\mathfrak{g} = \mathfrak{gl}(m|n)$ let

$$X := \{x \in \mathfrak{g}_1 \mid [x, x] = 0\},$$

$$X_k := \{x \in \mathfrak{g}_1 \mid [x, x] = 0, \text{rk}(x) = k\}, \quad k \leq \min(m, n).$$

For a \mathfrak{g} -module M define $DS_x M := \ker x_M / \text{im } x_M$.

Theorem

Let $x \in X_k$.

- 1 $DS_x : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-k|n-k}$ is a symmetric monoidal functor which commutes with translation functors E_i, F_i .
- 2 Passage to the Grothendieck groups induces a homomorphism of $\mathfrak{sl}(\infty)$ -modules $ds_x : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m-k|n-k}$.

DS functors.

For $\mathfrak{g} = \mathfrak{gl}(m|n)$ let

$$X := \{x \in \mathfrak{g}_1 \mid [x, x] = 0\},$$

$$X_k := \{x \in \mathfrak{g}_1 \mid [x, x] = 0, \text{rk}(x) = k\}, \quad k \leq \min(m, n).$$

For a \mathfrak{g} -module M define $DS_x M := \ker x_M / \text{im } x_M$.

Theorem

Let $x \in X_k$.

- 1 $DS_x : \mathcal{O}_{m|n} \rightarrow \mathcal{O}_{m-k|n-k}$ is a symmetric monoidal functor which commutes with translation functors E_i, F_i .
- 2 Passage to the Grothendieck groups induces a homomorphism of $\mathfrak{sl}(\infty)$ -modules $ds_x : \mathbf{K}_{m|n} \rightarrow \mathbf{K}_{m-k|n-k}$.

Remark.

Although DS_x is not exact, for an exact sequence
 $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ we have a canonical exact sequence

$$0 \rightarrow R \rightarrow DS_x N \rightarrow DS_x M \rightarrow DS_x L \rightarrow R \otimes \mathbb{C}^{0|1} \rightarrow 0.$$

This insures the existence of the corresponding map ds_x for the reduced Grothendieck groups.

Conjecture. Let $K_{m|n}^k$ be the subgroup in $K_{m|n}$ generated by the classes of all modules M such that $DS_x M = 0$. Then

$$\text{soc}_{k+1} K_{m|n} = K_{m|n}^k.$$

We have proved the analogous statement for the category $\mathcal{F}_{m|n}$ of finite-dimensional modules.

Remark.

Although DS_x is not exact, for an exact sequence
 $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ we have a canonical exact sequence

$$0 \rightarrow R \rightarrow DS_x N \rightarrow DS_x M \rightarrow DS_x L \rightarrow R \otimes \mathbb{C}^{0|1} \rightarrow 0.$$

This insures the existence of the corresponding map ds_x for the reduced Grothendieck groups.

Conjecture. Let $K_{m|n}^k$ be the subgroup in $K_{m|n}$ generated by the classes of all modules M such that $DS_x M = 0$. Then

$$\text{soc}_{k+1} K_{m|n} = K_{m|n}^k.$$

We have proved the analogous statement for the category $\mathcal{F}_{m|n}$ of finite-dimensional modules.

Remark.

Although DS_x is not exact, for an exact sequence
 $0 \rightarrow N \rightarrow M \rightarrow L \rightarrow 0$ we have a canonical exact sequence

$$0 \rightarrow R \rightarrow DS_x N \rightarrow DS_x M \rightarrow DS_x L \rightarrow R \otimes \mathbb{C}^{0|1} \rightarrow 0.$$

This insures the existence of the corresponding map ds_x for the reduced Grothendieck groups.

Conjecture. Let $K_{m|n}^k$ be the subgroup in $K_{m|n}$ generated by the classes of all modules M such that $DS_x M = 0$. Then

$$\text{soc}_{k+1} K_{m|n} = K_{m|n}^k.$$

We have proved the analogous statement for the category $\mathcal{F}_{m|n}$ of finite-dimensional modules.