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Classical Lie superalgebra gl(m|n)

Let V = Wy @ V4 be a vector superspace of dimension (m|n).
The general linear Lie superalgebra g := gl(m|n) is the algebra
Endk (V) of linear transformations of V

@ the supercommutator [X, Y] = XY — (—1))_“7YX sign rule;

o El t tri AlB
ements are matrices C D ,
° t A0 dd part 0|8
even par 0lD ) odd par C .

Invariant symmetric form: str XY leads to the invariant element in
g g _ _
Q:=> (-1)%X e X"

If M, N are gl(m|n)-modules, then @ : M@ N — M ® N commutes
with sl(oo0)-action.

V.Serganova
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@ b subalgebra of upper triangular matrices, b Cartan subalgebra;

® Op|n the category of modules, semisimple over b with integral
weights, locally finite over b and finitely generated,

e Highest weight category. Standard objects are Verma modules
M(X) = Ind} Cy;

o Kazhdan-Lusztig theory: Cheng—Lam-Wang,
Brundan—Losev—Webster.

Remark. Reduced Grothendieck group: [M] = —[M ® CO11].
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@ ¢, f;,i € Z satisfy Serre's relation for the infinite-dimensional
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v+ —0—0—0—...

® Ky, is an integrable sl(co)-module, sl(co)-weight spaces are
blocks in O -
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Goals

o Describe the structure of K, as an sl(co)-module. Compute
the socle filtration of K, and understand its categorical
meaning.

o Relate s5l(0o0)-morphisms K, , — Kp,_1),_1 with certain
tensor functors DS : Oy — Opp_1jn-1-

e Give an interpretation of non-semisimplicity of K, , in terms
of homological properties of O,,. Infinite cohomological
dimension.
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gl(1]1)-modules. Let us describe the sl(c0)-module Ky|;. Let E and
E. denote the natural and conatural sl(co)-modules. We have the
non-split exact sequence

0Py »E®E, 5 C—0,

where Py); corresponds to the Grothendieck subgroup of Ky,
generated by classes of projective modules. Furthermore, E ® E, is
identified with the Grothendieck subgroup generated by classes of
Verma modules. However, Ky; # E ® E,. We have another
non-split exact sequence

0 —-E®E,— Ky = C—0.

To describe the sl(oco)-structure of Ky; identify E ® E, with the
Lie algebra gl(oo) of finitary infinite matrices {(ajj)}i jcz. Then
Kyj1 = gl(co) © CJ, where Jj; = sgn(i)dj.
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Continuation of the example. Socle filtration.

P11 = soc Ky ~sl(o0),  Kyji/sl(o0) = C?

dim Hom,(ooy(Ky)1, C) = 2.

Choose a basis in g;:
. 01 {00
o) Y"1 o)
Define the functors Oy); — Svect by

DSM = Kerxp/Imxp, DS,M = Ker yp/ Im yp.

Those are tensor functors which induce a basis in
Homsl(oo)(K1|1vc)'



A category of sl(co)-modules.

Let 7 denote the full subcategory of sl(co)-modules consisting of
modules U satisfying the following conditions:

@ U is an integrable module of finite length.

@ Simple constituents of U are tensor modules
SO\ 1) € EBN @ EZ (here (A, ) is a bipartition).

© For any u € U we have eju = fiu = 0 for all but finitely many
i €Z.
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where N7, 6 are the Littlewood—Richardson coefficients.

Conjecture. T is Koszul.



Main results.

@ K, is an injective object of T.

@ The submodule E®™ @ E®" — Km|n is isomorphic to the
subgroup generated by the classes of all Verma modules.

© The socle of K, is isomorphic to the subgroup generated by
the classes of all projective objects in O,
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The Zuckerman functor

Let Fp, be the category of finite-dimensional

g := gl(m|n)-modules semisimple over h and J,, denote its
complexified reduced Grothendieck group.

For M € Oy, denote by 'M the subset of all go-finite vectors.
Then I defines a left exact functor Opy, — Fpy|p- Its derived
functor " is called the Zuckerman functor.

Theorem
@ Jnn is the injective hull of S(1™,1")
@ The map [M] — S (—1)/[I"M] defines an sl(cc)-equivariant
map v : Kpip = I
@ The restriction of y to E®™ @ E" — K.y, coinsides with the
natural projector to N"E ® A"E,.

v
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Theorem
Let x € X,.

Q@ DSx: Opjpn — Om_iin—k Is @ symmetric monoidal functor
which commutes with translation functors E;, F;.

@ Passage to the Grothendieck groups induces a homomorphism
of sl(oo)-modules ds : K — K gjn—«-




Although DS, is not exact, for an exact sequence
0—> N— M — L— 0 we have a canonical exact sequence

0 R — DS,N — DS;M — DS,L — R® C°* — 0.

This insures the existence of the corresponding map ds, for the
reduced Grothendieck groups.



Although DS, is not exact, for an exact sequence
0—> N— M — L— 0 we have a canonical exact sequence

0 R — DS,N — DS;M — DS,L — R® C°* — 0.

This insures the existence of the corresponding map ds, for the
reduced Grothendieck groups.

Conjecture. Let Kfn‘n be the subgroup in K, generated by the
classes of all modules M such that DS, M = 0. Then

s0Ck+1 Kpnjp = KX

m|n-



Although DS, is not exact, for an exact sequence
0—> N— M — L— 0 we have a canonical exact sequence

0 R — DS,N — DS;M — DS,L — R® C°* — 0.

This insures the existence of the corresponding map ds, for the
reduced Grothendieck groups.

Conjecture. Let Kfn‘n be the subgroup in K, generated by the
classes of all modules M such that DS, M = 0. Then

soCk+1 Kmjn = Kkm|n'
We have proved the analogous statement for the category Fp,, of
finite-dimensional modules.



