

A combinatorial description of some representations of degenerate affine Hecke algebras of type BC

Yue Zhao

University of California, Davis

October 27, 2018

Outline

Irreducible \mathcal{Y} -semisimple representations of degenerate AHA of type BC

Some representations defined by the Etingof-Freund-Ma functor

$$\mathcal{F} : \{G\text{-modules}\} \rightarrow \{\dot{H}_n\text{-representations}\}$$

Generators and Relations of the dAHA of type BC_n

The degenerate affine Hecke algebra $\dot{H}_n(\kappa_1, \kappa_2)$ over the field \mathbb{C} is an algebra with generators

$$s_1, \dots, s_{n-1}, \gamma, y_1, y_2, \dots, y_n;$$

and relations

- quadratic relations $s_i^2 = 1, \gamma^2 = 1,$
- braid relations $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1},$
 $s_i s_j = s_j s_i,$
 $s_{n-1} \gamma s_{n-1} \gamma = \gamma s_{n-1} \gamma s_{n-1},$
 $s_i \gamma = \gamma s_i;$
- $y_i y_j = y_j y_i,$
- $s_i y_i - y_{i+1} s_i = \kappa_1,$
- $\gamma y_n + y_n \gamma = \kappa_2.$

Let $W = \langle s_1, \dots, s_{n-1}, \gamma \rangle / \sim$ be the Weyl group of type BC.

\mathcal{Y} -semisimplicity

Since the subalgebra $\mathcal{Y} = \mathbb{C}\{Y_1, \dots, Y_n\}$ is commutative, then we can consider \mathcal{Y} -eigenspaces. Let M be an \hat{H}_n module, for each function $\zeta : \{1, 2, \dots, n\} \rightarrow \mathbb{C}$, define the subspace of M

$$M_\zeta = \{v \in M \mid y_i v = \zeta(i)v \text{ for } i \in [1, n]\}.$$

If

$$M = \bigoplus M_\zeta,$$

in this case we call M \mathcal{Y} -semisimple.

Each ζ such that $M_\zeta \neq 0$ is called a \mathcal{Y} -weight. M_ζ is the \mathcal{Y} -weight space of \mathcal{Y} -weight ζ and $v \neq 0 \in M_\zeta$ is a weight vector of weight ζ .

Intertwining operators

For each $i \in [0, n - 1]$, define

$$\phi_i = [s_i, y_i],$$

and for γ , define

$$\phi_n = [\gamma, y_n].$$

For each $w \in W$, it has a reduced expression $w = s_{i_1} s_{i_2} \dots s_{i_m}$. Define

$$\phi_w = \phi_{i_1} \phi_{i_2} \dots \phi_{i_m}.$$

This is well-defined since ϕ_1, \dots, ϕ_n satisfy the same braid relations as $s_1, \dots, s_{n-1}, \gamma$.

Facts about intertwining operators

$$y_i \phi_i = \phi_i y_{i+1},$$

$$y_n \phi_n = -\phi_n y_n.$$

So

$$\phi_w M_\zeta \subset M_{w \cdot \zeta}.$$

$$\begin{array}{ccccc} v & \xrightarrow{\phi_2} & \phi_2 v & \xrightarrow{\phi_1} & \phi_1 \phi_2 v \\ [-1, -2] & \xrightarrow{\gamma} & [-1, 2] & \xrightarrow{s_1} & [2, -1] \end{array}$$

Facts about irreducible \mathcal{Y} -semisimple representations

Let M be an irreducible and \mathcal{Y} -semisimple representation of \dot{H}_n .

- Fix a \mathcal{Y} -weight vector v , the set $\{\phi_w v \mid w \in W\}$ spans M .
- Every \mathcal{Y} -weight space of M is 1-dimensional.
- Let ζ be a weight of M such that $\zeta(i) - \zeta(i+1) = \pm 1$ for some $i \in [0, n-1]$. Then $\phi_i v = 0$ for $v \in M_\zeta$. Let ζ be a weight of M such that $\zeta(n) = \pm \frac{\kappa_2}{2}$. Then $\phi_n v = 0$ for $v \in M_\zeta$.

Example: $\kappa_2 = -2$

$$[-1, -2] \xrightarrow{\gamma} [-1, 2] \xrightarrow{s_1} [2, -1]$$

Etingof-Freund-Ma functor

Set $N = p + q$. Let $G = GL_N$ and $K = GL_p \times GL_q$. Let \mathfrak{g} denote the Lie algebra \mathfrak{gl}_n of G and \mathfrak{t} be the Lie algebra of K . Let \mathfrak{t}_0 be the subalgebra of \mathfrak{t} consisting of all the trace 0 matrices.

$$\mathcal{F}_{n,\mu} : \{G\text{-modules}\} \rightarrow \{\dot{H}_n(1, p - q - \mu N)\text{-representations}\}$$

Let V be the defining representation, define $\mathcal{F}_{n,\mu}(M) = (M \otimes V^{\otimes n})^{t_0, \mu}$, which is the μ -invariant of the tensor, i.e. $xv = \mu\chi(x)v$ for every $x \in \mathfrak{t}_0$, where $\mu \in \mathbb{C}$ and χ is a character of \mathfrak{t} which is

$$\chi\left(\begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix}\right) = qtrX_1 - ptrX_2.$$

Define the actions of s_i , γ and y_k

For a tensor $m \otimes v^{(1)} \dots v^{(n)}$ in $\mathcal{F}_{n,\mu}(M)$, where $v^{(i)}$ denotes the i -th copy, s_i flips $v^{(i)}$ and $v^{(i+1)}$ and γ acts on $v^{(n)}$ by

$$J = \begin{bmatrix} I_p & 0 \\ o & -I_q \end{bmatrix}$$

$$y_k = -\Sigma_{i|j} E_{ij}^{(0)} \otimes E_{ji}^{(k)} + \frac{1}{2} \Sigma_{j>k} S_{kj} - \frac{1}{2} \Sigma_{j< k} S_{kj} + \frac{1}{2} \Sigma_{j \neq k} S_{kj} \gamma_k \gamma_j + \frac{\kappa_2}{2} \gamma_k,$$

where E_{ij} , $S_{ij} = (ij)$ and $\gamma_k = S_{kn} \gamma S_{kn}$.

Example of $G = GL_2, p = q = 1$

Let M be a finite dimensional irreducible representation of G . The irreducible representations of GL_2 are indexed by young diagrams with two rows. So the irreducible representation M with the highest weight $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ is denoted by the young diagram

In this case, t_0 is only one dimensional with the basis $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and we have the character

$$\chi\left(\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\right) = 2.$$

So $xv = \mu\chi(x)v$ for every $x \in t_0$ means $\mathcal{F}_{n,\mu}(V \begin{array}{|c|c|} \hline \end{array})$ is spanned by vectors of degree 2μ .

By Pieri rule, the tensor product decomposes to the sum of finite dimensional irreducible representations of GL_2 . They are indexed by standard skew young tableaux with number 1 and 2.

$$V \begin{array}{|c|c|} \hline \end{array} \otimes V^{\otimes 2} = V \begin{array}{|c|c|c|c|} \hline \end{array} \oplus V \begin{array}{|c|c|c|} \hline \end{array} \begin{array}{|c|} \hline 2 \\ \hline \end{array} \oplus V \begin{array}{|c|c|c|c|} \hline \end{array} \begin{array}{|c|} \hline 1 \\ \hline \end{array} \oplus V \begin{array}{|c|c|} \hline \end{array} \begin{array}{|c|c|} \hline 1 \\ \hline 2 \\ \hline \end{array}$$

The weight space decomposition of each irreducible is as follows.

$$V_{\begin{array}{|c|c|c|c|} \hline & & & \\ \hline & & 1 & 2 \\ \hline \end{array}} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} 3 \\ 1 \end{pmatrix} \oplus \begin{pmatrix} 2 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 3 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

$$V_{\begin{array}{|c|c|c|} \hline & & 1 \\ \hline & & \\ \hline 2 & & \\ \hline \end{array}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \oplus \begin{pmatrix} 2 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$V_{\begin{array}{|c|c|c|} \hline & & 2 \\ \hline & & \\ \hline 1 & & \\ \hline \end{array}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \oplus \begin{pmatrix} 2 \\ 2 \end{pmatrix} \oplus \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$V_{\begin{array}{|c|c|} \hline & \\ \hline & \\ \hline 1 & 2 \\ \hline \end{array}} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

The set of all the blue pieces spans $\mathcal{F}_{2,0}(V \boxed{ })$. The blue piece in $V \boxed{ 1 2}$ is the following vector.

$$\binom{2}{2} = 2 \binom{0}{2} \otimes v_+ \otimes v_+ + 2 \binom{1}{1} \otimes v_- \otimes v_+ + 2 \binom{1}{1} \otimes v_+ \otimes v_- + 2 \binom{2}{0} \otimes v_- \otimes v_-$$

This is \mathcal{Y} -weight vector of the weight $[-1, -2]$.

Start with this \mathcal{Y} -weight vector we will have the other three \mathcal{Y} -weight vectors.

$$[-1, -2] \xrightarrow{\gamma} [-1, 2] \xrightarrow{s_1} [2, -1] \xrightarrow{\gamma} [2, 1]$$

Since the space $\mathcal{F}_{2,0}(V_{\square \square})$ is of dimension 4, so it is a \mathcal{Y} -semisimple representation.

The set of all the red pieces spans $\mathcal{F}_{2,1}(V_{\boxed{}\boxed{}})$. The red piece in $V_{\boxed{}\boxed{}\boxed{1}\boxed{2}}$ is the following vector.

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \otimes v_+ \otimes v_+ + \begin{pmatrix} 2 \\ 0 \end{pmatrix} \otimes v_- \otimes v_+ + \begin{pmatrix} 2 \\ 0 \end{pmatrix} \otimes v_+ \otimes v_-$$

This is \mathcal{Y} -weight vector of the weight $[-1, -2]$.

$$[-1, -2] \xrightarrow{\gamma} [-1, 2] \xrightarrow{s_1} [2, -1]$$