NOTES ON THE gl-Web CATEGORY

NICHOLAS DAVIDSON, JONATHAN R. KUJAWA, AND ROBERT MUTH

0.1. Definition of gl-Web. Let k be a commutative ring with identity.
For any n € Z and k € Z>(, we use the generalized binomial coefficient

(Z) _ n(n—l)--l-f!(n—k—kl) -

viewed as an element of k.

Definition 0.1.1. Let gl-Web denote a strict monoidal k-linear category with generating objects
a € Zx1. The monoidal structure is given on objects by concatenation. Thus an object in gl-Web is
a finite sequence of positive integers with the empty sequence being the unit object. More generally,
we sometime choose to write objects of gl-Web as a finite sequences of nonnegative integers where 0
indicates an instance of the unit object. The generating morphisms in this category are:

a b a-+b
\/ ca+b— (a,b), /\ :(a,b) > a+b,
a+b a b

for a,b € Z>o, where we write (a,b) for the monoidal product of the objects a and b, and a strand
labelled by 0 is a morphism to or from the unit object. We call these morphisms split, and merge,
respectively.

The following relations hold in gl-Web for all a,b, c € Z>o; :

Web-associativity:

a b c a b c a+b+c a+b+tc
Q+W = \%ﬂ ; “+%\ = /xﬂ ; (0.1)
a+b+c a+b+c a b c a b c
Rung swap:
a—s+r b+s—r a—s+r b+s—r
T s—t
a—b+r—s
a—s b+s — E < ¢ > atr—t b—r+t - (02)
t€%>0
s r—t
a b a

If @ and b are two sequences of nonnegative integers, then a general morphism in gl-Web from a
to b is a k-linear combination of diagrams obtained by vertically and horizontally concatenating splits,
merges, and vertical strands labeled by nonnegative integers and, moreover, when the labels along
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the bottom (resp. top) of each diagram are read left to right one obtains the sequence a (resp. b).
On diagrams composition is given by vertical concatenation and the monoidal structure is given by
horizontal concatenation.

Going forward, and in the relations defined above, we use the following conventions:

e Strands labeled by ‘0’ are to be deleted;
e Diagrams containing a negatively-labeled strand are to be read as zero;
e We will sometimes choose to omit labels on strands when the label is clear from context.

For brevity, we also adopt the convention in calculations that when an equality follows from a previous
result, this fact is indicated by placing the relevant equation number over the equals sign in question.

Remark 0.1.2. When k is a field gl-Web can be seen to be isomorphic to the Schur category defined
in [1], which appeared as this paper was being prepared. As explained therein, the Schur category is
related to the category introduced in [2]. Many of the relations established in the next section can
be inferred from [1, 2] by using [1, Remark 4.8, Theorem 4.10], but we choose to provide proofs here
because our starting assumptions are slightly different and in order to keep these notes self-contained.

0.2. Implied Relations for gl-Web. We first record a few relations which are implied by the defining
relations of gl-Web. The following ‘knothole’ relation follows immediately from (0.2).

Lemma 0.2.1. For all a,b € Z>¢ we have

a+b
a+b
a =
a
a-+b a-+b
Lemma 0.2.2. One has
a—s+r b+ts—r a—s+r b+s—r
r—t
—a+b—r+s
a+r - g n a—s—+t b+s—t »
teZ>o
s—t
a b
for all admissible a,b,r, s € Z>.
Proof. For space, we write
a—y+z bty—z a—y+z bty—zx
Y x
L(z,y) := ata bz and R(z,y) == a—y bty (0.3)
@ Y
a b a

for any =,y € Z>¢. We prove the lemma statement by induction on n = r 4 s. The claim is trivial for
n =0,1, so let n > 2 and assume the claim holds for all n’ < n. We have

L(r,s) % R(r,s) — 3 (“_b”_s)w—w,s—w)

w
wWEZ>o

R (a—b;r—s) S (—a+bu—r+s)R(r_w_u,s_w_u)

WEZ>o u€Z >0
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R - Y i(a—b;ﬁ;r—s)(—a+b—r+S>R(T_t’s_t)

t—w
tEZ~o w=1
_ bh—
= R(r,s) + Z ( ot ; T+S>R(r—t,s—t),
tEZ~o

where the second equality follows by the induction assumption, the last equality follows from the
Chu-Vandermonde identity. This completes the proof. a

Lemma 0.2.3. The following equalities hold in gl-Web:

// (S — st S//) o

= E // ,
K tGZZO t s —t
a b ¢ a b c

'I"/—’r‘”—‘rt

, Z (r—r’+r”> h\

I

~ | =

)

"
r—t
c

S
=
(e}
S}

b

. - ! 1" ! "
for all admissible a,b,c,r, v, v", 5,5, 8" € U>g.

Proof. The proof given in [3, Lemma 2.9], in the context of a web category where relations identical to
(0.1) and (0.2) hold, is directly applicable to the gl-Web category. O

0.3. Braiding for gl-Web. We next establish the category gl-Web admits a braiding.
For any a,b € Z>q, we define the crossing morphism:

Z (71)(175 s bis (052) Z (71)b77‘ atr by (04)

a b a b

Lemma 0.3.1. For all a,b € Z>o we have

a+b a+b a b a b
a b a b a+b a+b

Proof. We prove the first equality. The second is similar. We have

a-+b a-+b

a+b
— Z (_1)a—s (0£2) Z (_1)a—s (b + S) b+s
s—r=a—>b s—r=a—>b "
a b

S

a b a b
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a-+b a-+b

Considering the coefficient in the last term and using the substitution ¢ := a — s, we may write:

(-S>

s—r=a—>b

The last equality follows from an application of Euler’s finite difference theorem (see [4, (10.13)]). This
completes the proof. O

The following theorem describes the basic relations involving the crossing morphism.
c b a

% ) % | (0'5)
a p c a p c

c a+b

a b c

a b c

Theorem 0.3.2. For all a,b,c € Z>o, we have:

3]
4 BR -
AR

We define a crossing morphism a ® b — b ® a for objects a and b by the following diagram:

b1 b2 b:, ay az Ay

(0.8)

ai as ar b1 b2 bs
Once the previous theorem is proven it is straightforward to verify the following result.

Corollary 0.3.3. The crossing morphisms defined in (0.8) define a symmetric braiding on gl-Web.
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0.4. Proof of the gl-Web Braiding Theorem. For ease of reading the proof of Theorem 0.3.2 is
broken into the following lemmas.

Lemma 0.4.1. For all a,b € Z>q, we have

Proof. We have

= Z:;hb(—l)““’*ﬂ' B (_1)a+b85'<s+s'> =

t
r s—r=a—b
r'=b— s'—r'=b—a
s
a b

teZ>o
b

S

a a b
, r_¢ r_¢ /
i [ | O
s—r=a—b

t
s’ —r'=b—a
tGZzo

where we use the fact that s + s =7+ 1" and ' = s’ — a + b in the last equality, and the notation of
(0.3). Writing m:=s+s' —t, k:=s+s +a—b, c:=b— a, we may rewrite this as

k,ﬂ%m(‘l)k (C;k) Xk: (kn_ls) (m> R(m,m).

s=0 s
Now we may use the binomial identities

(0.9)

G560 = S0 -)

e — 8 s k
to rewrite (0.9) as
m 2m
2 k
> 3,0 ) e (B (5 wmm)
meZogu=0 N W15 u
m 2m
c L(2m\ (2m —u
—1
2 3l ) o () (0 e
meEZ>o u=0 k=0
m 2m—u
Z Z <2m>< c > Z (1)£<2mé U)R(m,m)
meZsou=0 >/ NVTU T
= R(0,0),
since the binomial theorem implies
2m—u
Im —
> (—1)4< " “) —0
¢
=0
whenever m > 0.
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Lemma 0.4.2. Crossings intertwine splits and merges:

a+b c
c a b
c a b

a-+b c

forall a,b,c € Z>y.

Proof. We prove the first equality.

a+b c

S
o
o

a+b c c a+b

& |

c a b a b c

c a b a b c a b c
a-+b c c a-+b

The others are proved via analogous arguments.

‘We have
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Now, fixing L, R € Z>, we consider the coefficient x(L, R) of

a+b c

in the sum above. Using the substitutions A=L— R—a+c—s, B=c— s, we have

(D B) = (-1 )L+R+a§§(_1)A+B<LRBA+B> (5_;%_;) <bAR>

B=0 A=0
— gg(_1)a+A+B (b _BR> <L - 1::;1 + B) (b ;R)
|t l’f (b;R> i’i(_l)A(L—JZ:§+3) (b;lR)

An application of Euler’s finite difference theorem (cf. [4, (10.13)]), shows that

‘f(_l)A(L—JZL—ngB) (b;R) .

b—R
b—R
I{(L,R) L+R+ E ( > _ (_1)L+a+b5b7R’
B=0
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by the binomial theorem. Therefore, we have

a-+b c

= >

M —L=c—(a+b)

completing the proof.

(_1)(a+b)—L

Lemma 0.4.3. Crossings satisfy the braid relation:

forall a,b,c € Z>y.

Proof. We have

as desired.

-

EE
i]

a-+b c

L042 Z
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0.5. A Useful Identity. Using the crossing we record an identity in gl-Web which will be useful in
later calculations.

Lemma 0.5.1. For all a,b,c,d € Z>( such that a 4+ b= c+d, we have

c d c d
= a—t d—t
t€Z>0 t
a b a b

Proof. We go by induction on n := a4+ b. The base case n = 0 is trivial. Fix n = a + b and assume the
claim holds for all @’ + o' < n. We first consider the case b = c. We have

b

b+a—t
t€Z>g

::><:: t+1 [::::i
D ST
tEZ>o
Uu€EZL >0

t€Z>o "
u€Z>o

a b a b

S
<o

<o

S)
<o
5]

where we have applied the induction assumption in the second line. Then for fixed u < a, we have

> o () {) e

if
tEl>o U< a

giving the result.
Now assume that b > ¢. Then we have

(0.2) c—b
2 ¥ ()
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c d
a—t
= Z b—C-’rt
t
t,u€Z>o u
c—t
b a
c d
(0.1,0.2) Z c—b d—u P deu
a t b—c+t ’
t,u€Z>o w
a b

where we have used the induction assumption in the second line. Now, for a fixed u < d, we have

c—b d—u
> t J\poeqt)=0
tEZZO ¢

by an application of the index shift formula (see [4, (6.69)]), which yields the result. O
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