
NOTES ON THE gl-Web CATEGORY

NICHOLAS DAVIDSON, JONATHAN R. KUJAWA, AND ROBERT MUTH

0.1. Definition of gl-Web. Let k be a commutative ring with identity.
For any n ∈ Z and k ∈ Z≥0, we use the generalized binomial coefficient(

n

k

)
:=

n(n− 1) · · · (n− k + 1)

k!
∈ Z,

viewed as an element of k.

Definition 0.1.1. Let gl-Web denote a strict monoidal k-linear category with generating objects
a ∈ Z≥1. The monoidal structure is given on objects by concatenation. Thus an object in gl-Web is
a finite sequence of positive integers with the empty sequence being the unit object. More generally,
we sometime choose to write objects of gl-Web as a finite sequences of nonnegative integers where 0
indicates an instance of the unit object. The generating morphisms in this category are:

a b

a+b

: a+ b→ (a, b),

a b

a+b

: (a, b)→ a+ b,

for a, b ∈ Z≥0, where we write (a, b) for the monoidal product of the objects a and b, and a strand
labelled by 0 is a morphism to or from the unit object. We call these morphisms split, and merge,
respectively.

The following relations hold in gl-Web for all a, b, c ∈ Z≥0; :

Web-associativity:

a b c

a+b+c

a+b =

a b c

a+b+c

b+c ,

a b c

a+b+c

a+b =

a b c

a+b+c

b+c ; (0.1)

Rung swap:

a b

a−s+r b+s−r

a−s b+s

r

s

=
∑

t∈Z≥0

(
a− b+ r − s

t

)
a b

a−s+r b+s−r

a+r−t b−r+t

s−t

r−t

. (0.2)

If a and b are two sequences of nonnegative integers, then a general morphism in gl-Web from a
to b is a k-linear combination of diagrams obtained by vertically and horizontally concatenating splits,
merges, and vertical strands labeled by nonnegative integers and, moreover, when the labels along
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the bottom (resp. top) of each diagram are read left to right one obtains the sequence a (resp. b).
On diagrams composition is given by vertical concatenation and the monoidal structure is given by
horizontal concatenation.

Going forward, and in the relations defined above, we use the following conventions:

• Strands labeled by ‘0’ are to be deleted;
• Diagrams containing a negatively-labeled strand are to be read as zero;
• We will sometimes choose to omit labels on strands when the label is clear from context.

For brevity, we also adopt the convention in calculations that when an equality follows from a previous
result, this fact is indicated by placing the relevant equation number over the equals sign in question.

Remark 0.1.2. When k is a field gl-Web can be seen to be isomorphic to the Schur category defined
in [1], which appeared as this paper was being prepared. As explained therein, the Schur category is
related to the category introduced in [2]. Many of the relations established in the next section can
be inferred from [1, 2] by using [1, Remark 4.8, Theorem 4.10], but we choose to provide proofs here
because our starting assumptions are slightly different and in order to keep these notes self-contained.

0.2. Implied Relations for gl-Web. We first record a few relations which are implied by the defining
relations of gl-Web. The following ‘knothole’ relation follows immediately from (0.2).

Lemma 0.2.1. For all a, b ∈ Z≥0 we have

a+b

a b

a+b

=

(
a+ b

a

) a+b

a+b

.

Lemma 0.2.2. One has

a b

a−s+r b+s−r

a+r b−r

s

r

=
∑

t∈Z≥0

(
−a+ b− r + s

t

)
a b

a−s+r b+s−r

a−s+t b+s−t

r−t

s−t

,

for all admissible a, b, r, s ∈ Z≥0.

Proof. For space, we write

L(x, y) :=

a b

a−y+x b+y−x

a+x b−x

y

x

and R(x, y) :=

a b

a−y+x b+y−x

a−y b+y

x

y

, (0.3)

for any x, y ∈ Z≥0. We prove the lemma statement by induction on n = r + s. The claim is trivial for
n = 0, 1, so let n ≥ 2 and assume the claim holds for all n′ < n. We have

L(r, s)
(0.2)
= R(r, s)−

∑
w∈Z>0

(
a− b+ r − s

w

)
L(r − w, s− w)

= R(r, s)−
∑

w∈Z>0

(
a− b+ r − s

w

) ∑
u∈Z≥0

(
−a+ b− r + s

u

)
R(r − w − u, s− w − u)
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= R(r, s)−
∑

t∈Z>0

t∑
w=1

(
a− b+ r − s

w

)(
−a+ b− r + s

t− w

)
R(r − t, s− t)

= R(r, s) +
∑

t∈Z>0

(
−a+ b− r + s

t

)
R(r − t, s− t),

where the second equality follows by the induction assumption, the last equality follows from the
Chu-Vandermonde identity. This completes the proof. �

Lemma 0.2.3. The following equalities hold in gl-Web:

s

s′′ s′

a b c

=
∑

t∈Z≥0

(
s− s′ + s′′

t

)
s+s′′

s′′−t

s′−s′′+t

a b c

,

r′′

r

r′

a b c

=
∑

t∈Z≥0

(
r − r′ + r′′

t

)
r+r′′

r′′−t

r′−r′′+t

a b c

,

for all admissible a, b, c, r, r′, r′′, s, s′, s′′ ∈ Z≥0.

Proof. The proof given in [3, Lemma 2.9], in the context of a web category where relations identical to
(0.1) and (0.2) hold, is directly applicable to the gl-Web category. �

0.3. Braiding for gl-Web. We next establish the category gl-Web admits a braiding.
For any a, b ∈ Z≥0, we define the crossing morphism:

a b

b a

:=
∑

s−r=a−b

(−1)a−s

a b

b a

a−s b+s

r

s

(0.2)
=

∑
s−r=a−b

(−1)b−r

a b

b a

a+r b−r

s

r

. (0.4)

Lemma 0.3.1. For all a, b ∈ Z≥0 we have

a b

a+b

=

a b

a+b

and

a b

a+b

=

a b

a+b

.

Proof. We prove the first equality. The second is similar. We have

a b

a+b

=
∑

s−r=a−b

(−1)a−s

a b

s

r

a+b

(0.2)
=

∑
s−r=a−b

(−1)a−s
(
b+ s

r

)
a b

s

b+s

a+b
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(0.1)
=

∑
s−r=a−b

(−1)a−s
(
b+ s

r

)
a b

s

a+b

(0.2)
=

∑
s−r=a−b

(−1)a−s
(
b+ s

r

)(
a

s

)
a b

a+b

.

Considering the coefficient in the last term and using the substitution t := a− s, we may write:∑
s−r=a−b

(−1)a−s
(
b+ s

r

)(
a

s

)
=

a∑
t=0

(−1)t
(
b+ a− t

a

)(
a

t

)
= 1.

The last equality follows from an application of Euler’s finite difference theorem (see [4, (10.13)]). This
completes the proof. �

The following theorem describes the basic relations involving the crossing morphism.

Theorem 0.3.2. For all a, b, c ∈ Z≥0, we have:

a b

a b

=

a b

a b

,

ba c

bc a

=

ba c

bc a

, (0.5)

c a b

a+b c

=

c a b

a+b c

,

cba

a+bc

=

cba

a+bc

, (0.6)

c a b

a+b c

=

c a b

a+b c

,

cba

a+bc

=

cba

a+bc

. (0.7)

We define a crossing morphism a⊗ b→ b⊗ a for objects a and b by the following diagram:

a1 a2 ar b1 b2 bs

b1 b2 bs a1 a2 ar

···

···

···

···

··· . (0.8)

Once the previous theorem is proven it is straightforward to verify the following result.

Corollary 0.3.3. The crossing morphisms defined in (0.8) define a symmetric braiding on gl-Web.
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0.4. Proof of the gl-Web Braiding Theorem. For ease of reading the proof of Theorem 0.3.2 is
broken into the following lemmas.

Lemma 0.4.1. For all a, b ∈ Z≥0, we have

a b

=

a b

.

Proof. We have

a b

=
∑

s−r=a−b
s′−r′=b−a

(−1)a+b−s−s′

a b

r′

s′

r

s

L.0.2.2
=

∑
s−r=a−b
s′−r′=b−a

t∈Z≥0

(−1)a+b−s−s′
(
s+ s′

t

)

a b

r′

r−t

s′−t

s

L.0.2.1
=

∑
s−r=a−b
s′−r′=b−a

t∈Z≥0

(−1)a+b−s−s′
(
s+ s′ − t
s′ + a− b

)(
s+ s′ − t

s

)(
s+ s′

t

)
R(s+ s′ − t, s+ s′ − t),

where we use the fact that s+ s′ = r + r′ and r′ = s′ − a+ b in the last equality, and the notation of
(0.3). Writing m := s+ s′ − t, k := s+ s′ + a− b, c := b− a, we may rewrite this as∑

k,m∈Z≥0

(−1)k
(
c+ k

m

) k∑
s=0

(
m

k − s

)(
m

s

)
R(m,m). (0.9)

Now we may use the binomial identities(
c+ k

m

)
=

m∑
u=0

(
c

m− u

)(
k

u

)
and

k∑
s=0

(
m

k − s

)(
m

s

)
=

(
2m

k

)
to rewrite (0.9) as∑

m∈Z≥0

m∑
u=0

(
c

m− u

) 2m∑
k=0

(−1)k
(

2m

k

)(
k

u

)
R(m,m)

=
∑

m∈Z≥0

m∑
u=0

(
c

m− u

) 2m∑
k=0

(−1)k
(

2m

u

)(
2m− u
k − u

)
R(m,m)

=
∑

m∈Z≥0

m∑
u=0

(
2m

u

)(
c

m− u

) 2m−u∑
`=0

(−1)`
(

2m− u
`

)
R(m,m)

= R(0, 0),

since the binomial theorem implies

2m−u∑
`=0

(−1)`
(

2m− u
`

)
= 0

whenever m > 0. �
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Lemma 0.4.2. Crossings intertwine splits and merges:

c a b

a+b c

=

c a b

a+b c

,

cba

a+bc

=

cba

a+bc

,

c a b

a+b c

=

c a b

a+b c

,

cba

a+bc

=

cba

a+bc

,

for all a, b, c ∈ Z≥0.

Proof. We prove the first equality. The others are proved via analogous arguments. We have

c a b

a+b c

=
∑

s−r=c−a
s′−r′=c−b

(−1)s+s′

c a b

a+b c

s

r

b

s′

r′

(0.1)
=

∑
s−r=c−a
s′−r′=c−b

(−1)s+s′

c a b

a+b c

s

r

b

s′

r′

L.0.2.3
=

∑
s−r=c−a
s′−r′=c−b

(−1)s+s′
(
a+ s− s′

r

)

c a b

a+b c

s

b+r

s′

r′

(0.2)
=

∑
s−r=c−a
s′−r′=c−b

t∈Z≥0

(−1)s+s′
(
a+ s− s′

r

)(
r

t

)

c a b

a+b c

s

b+r

r′−t

s′−t

(0.1)
=

∑
s−r=c−a
s′−r′=c−b

t∈Z≥0

(−1)s+s′
(
a+ s− s′

r

)(
r

t

)

c a b

a+b c

s

c−s

r′−t

s′−t
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L.0.2.3
=

∑
s−r=c−a
s′−r′=c−b

t∈Z≥0

u∈Z≥0

(−1)s+s′
(
a+ s− s′

r

)(
r

t

)(
c− s′ + t

u

)

c a b

a+b c

r′−t

c−s−u

=
∑

s−r=c−a
s′−r′=c−b

t∈Z≥0

u∈Z≥0

(−1)s+s′
(
a+ s− s′

r

)(
r

t

)(
c− s′ + t

u

)

c a b

a+b c

r′−t

r+r′
−t+u

.

Now, fixing L,R ∈ Z≥0, we consider the coefficient κ(L,R) of

c a b

a+b c

R

L

in the sum above. Using the substitutions A = L−R− a+ c− s, B = c− s′, we have

κ(L,R) = (−1)L+R+a
b−R∑
B=0

b−R∑
A=0

(−1)A+B

(
L−R−A+B

B

)(
L−R−A
b−R−B

)(
b−R
A

)

=
b−R∑
B=0

b−R∑
A=0

(−1)a+A+B

(
b−R
B

)(
L−R−A+B

b−R

)(
b−R
A

)

= (−1)L+R+a
b−R∑
B=0

(−1)B
(
b−R
B

) b−R∑
A=0

(−1)A
(
L−R−A+B

b−R

)(
b−R
A

)
.

An application of Euler’s finite difference theorem (cf. [4, (10.13)]), shows that

b−R∑
A=0

(−1)A
(
L−R−A+B

b−R

)(
b−R
A

)
= 1,

so

κ(L,R) = (−1)L+R+a
b−R∑
B=0

(−1)B
(
b−R
B

)
= (−1)L+a+bδb,R,
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by the binomial theorem. Therefore, we have

c a b

a+b c

=
∑

M−L=c−(a+b)

(−1)(a+b)−L

c a b

a+b c

L

M

=

c a b

a+b c

,

completing the proof. �

Lemma 0.4.3. Crossings satisfy the braid relation:

ba c

bc a

=

ba c

bc a

,

for all a, b, c ∈ Z≥0.

Proof. We have

a b c

=
∑

s−r=a−c
(−1)a−s

a b c

r

s

L.0.4.2
=

∑
s−r=a−c

(−1)a−s

a b c

r

s

L.0.4.1
=

∑
s−r=a−c

(−1)a−s

a b c

r

s

L.0.4.2
=

∑
s−r=a−c

(−1)a−s

a b c

r

s

L.0.4.1
=

∑
s−r=a−c

(−1)a−s

a b c

r

s

=

a b c

,

as desired. �
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0.5. A Useful Identity. Using the crossing we record an identity in gl-Web which will be useful in
later calculations.

Lemma 0.5.1. For all a, b, c, d ∈ Z≥0 such that a+ b = c+ d, we have

a b

c d

=
∑

t∈Z≥0

a b

c d

t

a−t d−t .

Proof. We go by induction on n := a+ b. The base case n = 0 is trivial. Fix n = a+ b and assume the
claim holds for all a′ + b′ < n. We first consider the case b = c. We have

a b

b a

(0.4)
=

a b

b a

+
∑

t∈Z>0

(−1)t+1

a b

b a

t b+a−t

b−t

a−t

=

a b

b a

+
∑

t∈Z>0

u∈Z≥0

(−1)t+1

a b

b−t

a−t

u

b a

t

(0.1,0.2)
=

a b

b a

+
∑

t∈Z>0

u∈Z≥0

(−1)t+1

(
a− u
t

)
a b

b a

u

a−u b−u ,

where we have applied the induction assumption in the second line. Then for fixed u ≤ a, we have

∑
t∈Z>0

(−1)t+1

(
a− u
t

)
=

{
0 if u = a

1 if u < a,

giving the result.
Now assume that b > c. Then we have

a b

c d

(0.2)
=

∑
t∈Z≥0

(
c− b
t

)
a b

c d

b−c+t

a−t

c−t
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=
∑

t,u∈Z≥0

(
c− b
t

)

ab

a−t

c−t

u

dc

b−c+t

(0.1,0.2)
=

∑
t,u∈Z≥0

(
c− b
t

)(
d− u

b− c+ t

)
a b

c d

u

a−u d−u ,

where we have used the induction assumption in the second line. Now, for a fixed u ≤ d, we have∑
t∈Z≥0

(
c− b
t

)(
d− u

b− c+ t

)
= 1,

by an application of the index shift formula (see [4, (6.69)]), which yields the result. �

References

[1] J. Brundan, I. Entova-Aizenbud, P. Etingof, and V. Ostrik, Semisimplification of the category of tilting modules for

GLn, arXiv e-prints (2020), arXiv:2002.01900, arXiv:2002.01900.

[2] S. Cautis, J. Kamnitzer, and S. Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014), no. 1-2,
351–390.

[3] B. Elias, Light ladders and clasp conjectures, arXiv e-prints (2015), arXiv:1510.06840, arXiv:1510.06840.

[4] H. Gould, Tables of combinatorial identities, 2010.

Email address: njd@reed.edu

Department of Mathematics, Reed College, Portland, OR

Email address: kujawa@ou.edu

Department of Mathematics, University of Oklahoma, Norman, OK

Email address: rmuth@washjeff.edu

Department of Mathematics, Washington & Jefferson College, Washington, PA

http://arxiv.org/abs/2002.01900
https://doi.org/10.1007/s00208-013-0984-4
http://arxiv.org/abs/1510.06840
https://math.wvu.edu/~hgould/

	0.1. Definition of a-Web
	0.2. Implied Relations for a-Web
	0.3. Braiding for a-Web
	0.4. Proof of the aWeb Braiding Theorem
	0.5. A Useful Identity
	References

